• Title/Summary/Keyword: drag friction

Search Result 181, Processing Time 0.03 seconds

The Study on the Drag Reduction for Gas/Liquid Two Phase Flow (기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究))

  • Cha, K.O.;Oh, Y.K.;Kim, J.G.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

The Reynolds Number Effects on the Projectile with an Altitude Change (고도에 따른 발사체의 레이놀즈수 영향성 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Lee, Young-Min;Cho, Tae-Hwan;Myong, Rho-Shin;Park, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.

Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

  • Keerthana, M.;Harikrishna, P.
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.301-328
    • /
    • 2017
  • Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

Nonlinear Dynamical Friction of a Circular-orbit Perturber in a Uniform Gaseous Medium

  • Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • We use three-dimensional hydrodynamic simulations to investigate nonlinear gravitational responses of gas to, and the resulting drag force on, a massive perturber moving on a circular orbit through a uniform gaseous medium. We assume that the background medium is non-rotating and adiabatic with index 5/3, and represent the perturber using a Plummer potential with softening radius a. This work extends our previous study where we showed that the drag force on a straight-line trajectory is proportional to a0.45 if the perturber is massive enough. This indicates that the orbital decay of supermassive black holes (SMBHs) near galaxy centers may take much longer than the prediction of the linear force formula applicable for low-mass perturbers. For the circular orbits are considered, however, we find that the nonlinear drag force becomes independent of a, but dependent instead on the orbital radius R as $\varpropto$ R0.5. This suggests not only that the choices of large values of a, for resolution issues, in recent numerical experiments for mergers of SMBH, are marginally acceptable, but also that the gaseous drag indeed provides an efficient mean for the orbtial decay of SMBHs.

  • PDF

Determination of Urban Surface Aerodynamic Characteristics Using Marquardt Method

  • Zhang, Ning;Jiang, Weimei;Gao, Zhiqiu;Hu, Fei;Peng, Zhen
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.281-283
    • /
    • 2009
  • Marquardt method is used to estimate the aerodynamic parameters in urban area of Beijing City, China, including displacement length (d), roughness length ($z_0$) and friction velocity (u*) and drag coefficient. The surface drag coefficient defined as the ratio between friction velocity and mean wind speed is 0.125 in our research, which is close to typical urban area value. The averaged d and $z_0$ are 1.2 m and 7.6 m. d and $z_0$ change with direction because of the surface heterogeneity over urban surface and reach their maximum values at S-SW sector, this tendency agrees with the surface rough element distribution around the observation tower.

Development of Vehicle Tunnel Ventilation System (도로터널 환기시스템 개발연구)

  • Lee, Chang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

Numerical Analysis for Hull Cleaning ROV Resistance Performance (선저청소로봇 저항성능 전산해석)

  • Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kim, Su-Hu;Kim, Tae-Hyung;Woo, Jong-Sik;Joo, Young-Sock
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.64-74
    • /
    • 2008
  • The flaw around a ROV (Remotely Operated Vehicle) has been numerically investigated to improve resistance performance by modifying the hull form of the ROV. For the base hull form considered in this study, the form drag rather than the friction drag is dominant to the total drag Subsequently, the surfaces on which the local pressure highly acts have been modified to produce the streamlined-shape. Based on the surface modification, seven different hull forms have been chosen as candidates for drag reduction. Among the candidates, the semi-sphericalized housing and the streamlined-bow achieved greatest drag reduction comparing with the others. Consequently, the hull form combined with the semi-sphericalized housing and the streamlined-bow gave approximately 17% drag reduction at the design velocity of 3 knots.

Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics (자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구)

  • Cho, Min-Hyung;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF