• Title/Summary/Keyword: drag friction

Search Result 181, Processing Time 0.026 seconds

Turbulent boundary layer control via electro-magnetic forces (전자기력을 이용한 난류경계층 제어)

  • Lee J.-H.;Sung H, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.166-171
    • /
    • 2004
  • Direct numerical simulations are peformed to investigate the physics of a spatially developing turbulent boundary layer flow suddenly subjected to spanwise oscillating electro-magnetic forces in the near-wall region. The Reynolds number based on the inlet momentum thickness and free-stream velocity is $Re_\theta=300$. A fully-implicit fractional step method is employed to simulate the flow. The mean flow properties and the Reynolds stresses are obtained to analyze the near-wall turbulent structure. It is found that skin-friction and turbulent kinetic energy can be reduced by the electro-magnetic forces. Instantaneous flow visualization techniques are used to observe the response of streamwise vortices to spanwise oscillating forces. The near-wall vortical structures are clearly affected by spanwise oscillating electro-magnetic forces.

  • PDF

A Study on the Lubricating Air-layer Detection Techniques with Digital Image Analysis in Flat Plate Air Lubrication Test (공기윤활평판실험에서 디지털 영상분석을 통한 윤활공기막 검출기법)

  • Park, SeongHyeon;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The reduction of $CO_2$ emissions has been a key target in the Marine Industry since the IMO's Marine Environment Protection Committee published its findings in 2009. The representative emission index is termed as the EEDI (Energy Efficiency Design Index) for the new ships. Among various flow control techniques ever proposed, the air lubrication method is the one of most promising one in terms of practical applicability. The present study examines the basic characteristics of the flat plate test with intention of applying the air lubrication technology to the reduction of the resistance of a ship. Image analysis technique is proposed as a tool to quantify the effectiveness of the air lubrication method.

Numerical Analysis for the Wall Effect in the Two Dimensional Incompressible Flow (이차원 비압축성 유동에서 위벽효과에 대한 수치해석)

  • Kim J. J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.160-166
    • /
    • 1998
  • In this paper, incompressible two-dimensional Navier-Stokes equations are numerically solved for the study of steady laminar flow around a body with the wall effect. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. To investigate the wall effect, numerical computations are carried out for the NACA 0012 section at the various blockage ratios. The pressure and skin friction on the foil surface, velocity pronto in its wake and drag coefficient are investigated as functions of the blockage ratio.

  • PDF

Shape Optimization of A Surface Roughened by Staggered Ribs To Enhance Turbulent Heat Transfer

  • Kim Hong-Min;Kim Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.237-239
    • /
    • 2003
  • The present study investigates on design optimization of rib-roughened two-dimensional channel to enhance turbulent heat transfer. Response surface method with Reynolds-averaged Navier-Stokes analysis is used as an optimization technique. Standard $k-{\varepsilon}$model with wall functions is adopted as a turbulence closure. The objective function is defined as a linear combination of heat transfer and friction drag coefficients with weighting factor. Computational results for overall heat transfer rate show good agreements with experimental data. Four design variables are optimized for weighting factor of 0.02.

  • PDF

The Numerical multi-phase analysis of ventilating flow around vehicle (환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석)

  • Park, Wam-Gyu;Kim, Dong-Hyun;Jung, Chul-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Response of Spatially Developing Turbulent Boundary Layer to Spanwise Oscillating Electromagnetic Force (횡 방향 진동하는 전자기력에 대한 공간 발달하는 난류 경계층의 반응)

  • Lee, Joung-Ho;Sung, Hyung Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1189-1198
    • /
    • 2005
  • Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to spanwise oscillating electromagnetic forces in the near wall region. A fully implicit fractional step method was employed to simulate the flow. The mean flow properties and the Reynolds stresses were obtained to analyze the near-wall turbulent structure. It is found that skin friction and turbulent kinetic energy can be reduced by the electromagnetic forces. The decrease in production is responsible fur the reduction of turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the response of streamwise vortices and streak structures to spanwise oscillating forces. The near-wall vortical structures are affected by spanwise oscillating electromagnetic forces. Following the stopping of the electromagnetic force, the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF