• Title/Summary/Keyword: drag

Search Result 2,275, Processing Time 0.025 seconds

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 실험적 연구)

  • Im, Hui-Chang;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.260-268
    • /
    • 2001
  • Wake structures behind two circular cylinders with different groove configurations(U and V-shape) have been investigated experimentally. The results were compared with those for the smooth cylinder having the same diameter D. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number in the range of Re(sub)D=8,000∼14,000. As a result, the U-shaped groove was found to reduce the drag up to 18.6%, but the V-shaped groove reduced drag force only 2.5% compared with the smooth cylinder. As the Reynolds number increases, the vortex shedding frequency becomes a little larger than that of the smooth cylinder. The visualized flow using the smoke-wire and particle tracing methods shows the flow structure qualitatively.

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

Drag and Lift Forces of a Circular Cylinder Located Parallel to a Planar Jet (평면 제트내의 평행하게 놓인 원형 실린더가 받는 항력과 양력)

  • Gang, Sin-Hyeong;Hong, Sun-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.369-376
    • /
    • 1996
  • Variations of the drag and lift forces of a circular cylinder in a planar turbulent jet were experimentally investigated. The force was directly measured using the load cell and estimated by integrating the pressure distribution on the cylinder. As the cylinder moves outward from the center of the jet, the direction of lift force changes and the drag force decreases. Reynolds number, the ratio of cylinder's diameter to half width of jet had effect on maximum drag coefficient and the location where the direction of lift changes.

Experimental study of embedding motion and holding power of drag embedment type anchor on hard and soft seafloor

  • Shin, Hyun-Kyoung;Seo, Byoung-Cheon;Lee, Jea-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2011
  • As larger ships and floating offshore structures are, and rougher the marine environment becomes nowadays, a drag embedment type anchor of more stable performance and higher holding power is requested. This paper describes an experimental study of the drag embedding motion and the resultant holding force of three types of drag embedment type anchor model (HALL, AC-14, SEC POOL-N, scale 1/10).

An Experimental Study on the Pumping Performance of Molecular Drag Pumps

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1483-1491
    • /
    • 2006
  • The pumping performance of molecular drag pumps (MDP) has been investigated experimentally. The exporimented MDPs are a disk-type drag pump (DTDP), helical-type drag pump(HTDP) and compound drag pump (CDP), respectively In the case of the DTDP, spiral channels of a rotor are cut on both upper surface and lower surface of a rotating disk, and the corresponding stator is a planar disk. In the case of the HTDP, the rotor has six rectangular grooves. The CDP consists with the DTDP, at lower part, and with the HTDP, at upper part. The experiments are performed in the outlet pressure range of $0.2{\sim}533Pa$. The inlet pressure and compression ratio are measured under the various conditions of outlet pressure and throughputs, and nitrogen is used for the test gas. At the outlet pressure of 0.2Pa, the ultimate pressure has been reached to $1.0{\times}10^{-2}Pa$ for the HTDP, $1.3{\times}10^{-4}Pa$ for the DTDP, and $3.6{\times}10^{-5}Pa$ for the CDP. The maximum compression ratio of the CDP is much higher than those of the DTDP or HTDP. Consequently, the ultimate pressure of the CDP is the lowest one.

Experimental Analysis on Aerodynamic Drag of HEMU-400X as Variations of Pantograph Cover Configurations (팬터그래프 커버형상에 따른 HEMU-400X 항력의 실험적 분석)

  • Lee, Yeong-Bin;Kwak, Min-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.88-93
    • /
    • 2011
  • The aerodynamic drag characteristics of HEMU-400X which has been being developed for the maximum speed of 430km/h were analyzed experimentally as the variations of the pantograph cover configurations to reduce the acoustic noise and the aerodynamic drag of the pantograph system. The wind tunnel tests were performed with three pantograph cover models upon 1/20 scaled 5-car model of HEMU-400X. Two kinds of wedge shapes which induce up-flow in the vicinity of the pantograph and one cone shape which reduces the whole train drag were used in order to compare the aerodynamic characteristics as the pantograph cover shape changes. The each axial force of 5 each car was measured at a time with the test velocities, 30, 40, 50, 60m/s. Through the wind tunnel test the base drag forces of HEMU-400x model and the forces by the pantograph cover on the train model were investigated and the aerodynamic drag characteristics of the train model by the pantograph cover configurations were analyzed.

  • PDF

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Drag Reduction Effect by a Self-Adjustable Splitter Plate on the Flow over a Circular Cylinder (원형실린더 후류내의 가동형 와류분할판에 의한 항력 감소효과)

  • 박운진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1262-1275
    • /
    • 1993
  • The drag reduction effect of a freely-rotatable splitter plate was experimentally investigated in the 2-D wake behind a circular cylinder. By arranging the splitter plate to be aparted with a certain gap from the cylinder, the splitter plate was able to be aligned itself automatically to the flow direction in the tested range of 6.2$\times$$10^3$$\times$$10^4$. As a result, it was proven that the self-adjustable splitter plate always reduced effectively the drag imposed on the body against any arbitrary flow directions. In a specific range of Reynolds numbers, the drag reduction effect was dependent not only on the length of the splitter plate but also on the gap distance between the plate and the trailing edge of the body. For a splitter plate with a specific length, there existed a unique optimum range of gap distance to obtain successfully the drag reduction effect, however, the optimum range of gap distance was dependent on Reynolds number.

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.