• Title/Summary/Keyword: downward shortwave radiation

Search Result 17, Processing Time 0.021 seconds

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Net Radiation Estimation Using Flux Tower Data and Integrated Hydrological Model: For the Seolmacheon and Chungmichen Watersheds (플럭스 타워 관측 자료 및 통합수문모형을 이용한 순복사량 산정: 설마천, 청미천 유역을 대상으로)

  • Kim, Daeun;Baek, JongJin;Jung, Sung-Won;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.301-314
    • /
    • 2013
  • Spatial heterogeneous characteristics of solar radiation energy from Climate Change gives rise to energy imbalance in the general ecological system including water resources. To understand energy flow, flux towers are up and running throughout the world. In step with, in domestic major areas, there have been observed using several flux towers. In this study, downward shortwave radiation, downward long wave radiation, and net radiation that take important part in hydro-meteorology and ecology were calculated by proposed physical equations using flux data of the Seolmacheon and Choengmicheon, then, the calculated net radiation and observed net radiation were individually compared and validated. The results confirmed applicability of physical methods for insufficient hydro-meteorological data and possibility for observed data of hydro-meteorological variables.

Feature Vector Extraction for Solar Energy Prediction through Data Visualization and Exploratory Data Analysis (데이터 시각화 및 탐색적 데이터 분석을 통한 태양광 에너지 예측용 특징벡터 추출)

  • Jung, Wonseok;Ham, Kyung-Sun;Park, Moon-Ghu;Jeong, Young-Hwa;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.514-517
    • /
    • 2017
  • In solar photovoltaic systems, power generation is greatly affected by the weather conditions, so it is essential to predict solar energy for stable load operation. Therefore, data on weather conditions are needed as inputs to machine learning algorithms for solar energy prediction. In this paper, we use 15 kinds of weather data such as the precipitation accumulated during the 3 hours of the surface, upward and downward longwave radiation average, upward and downward shortwave radiation average, the temperature during the past 3 hours at 2 m above from the ground and temperature from the ground surface as input data to the algorithm. We analyzed the statistical characteristics and correlations of weather data and extracted the downward and upward shortwave radiation averages as a major elements of a feature vector with high correlation of 70% or more with solar energy.

  • PDF

Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer (하절기 도시의 장.단파 복사특성 관측)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.105-110
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1) In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2) The upper part of atmosphere layers in the urban area absorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3) The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas.

  • PDF

Impact of Urban Thermal Environment Improvement by Street Trees and Pavement Surface Albedo (가로수와 바닥 포장 표면 알베도의 도시 열 환경 개선 효과)

  • Na-youn Kim;Eun-sub Kim;Seok-hwan Yun;Zheng-gang Piao;Sang-hyuck Kim;Sang-jun Nam;Hwa-Jun Jea;Dong-kun Lee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.47-59
    • /
    • 2023
  • Due to climate change and urbanization, abnormally high temperatures and heat waves are expected to increase in urban and deteriorate thermal comfort. Planting of street trees and changing the albedo of urban surfaces are the strategies for mitigating the thermal environment of urban, and both of these strategies affect the exposure and blocking of radiative fluxes to pedestrians. After measuring the shortwave and longwave radiation according to the ground surface with different albedo and the presence of street trees using the CNR4 net radiometer, this study analyzed the relationship between this two strategies in terms of thermal environment mitigation by calculating the MRT(Mean Radiant Temperature) of each environment. As a result of comparing the difference between the downward shortwave radiation measured under the right tree and at the control, the shortwave radiation blocking effect of the tree increased as the downward shortwave radiation increased. During daytime hours (from 11 am to 3 pm), the MRT difference caused by the albedo difference(The albedo of the surfaces are 0.479 and 0.131, respectively.) on surfaces with no tree is approximately 3.58℃. When tree is present, the MRT difference caused by the albedo difference is approximately 0.49℃. In addition, in the case of the light-colored ground surface with high albedo, the surface temperature was low and the range of temperature change was lower than the surrounding surface with low albedo. This result shows that the urban thermal environment can be midigate through the planting of street trees, and that the ground surface with high albedo can be considered for short pedestrians. These results can be utilized in planning street and open space in urban by choosing surfaces with high albedo along with the shading effect of vegetation, considering the use by various users.

Characteristics of the Seasonal Variation of the Radiation in a Mixed Forest at Kwangneung Arboretum (광릉수목원 혼합림에서 복사 에너지의 계절 변화 특성)

  • 김연희;조경숙;김현탁;엄향희;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.285-296
    • /
    • 2003
  • The measurement of the radiation energy, trunk temperature, leaf area index (LAI), air temperature, vapor pres-sure, and precipitation has been conducted under a mixed forest at Kwangneung Arboretum during the period of 2001. Characteristics of the diurnal and seasonal variation of the radiative energy were investigated. The aerodynamic roughness length was determined as about 1.6 m and the mean albedo was about 0.1 The downward short-wave radiation was linearly correlated with the net radiation and its correlation coefficient was about 0.96. From this linear relation, the heating coefficient was calculated and its annual mean value was about 0.21 The albedo and heating coefficient was varied with season, surface characteristics, and meteorological conditions. The diurnal and seasonal variations of radiation energy were discussed in terms of the surface characteristics and meteorological conditions. In the daytime, during clear skies, net radiation was dominated by the shortwave radiation. In presence of clouds and fog, the radiation energy was diminished. At night, the net radiation was entirely dominated due to the net longwave radiation. There was no distinct diurnal variation in net radiation flux during the overcast or rainy days. The net radiation was strongest in spring and weakest in winter. The seasonal development in leaf area was also reflected in a strong seasonal pattern of the radiation energy balance. The timing, duration, and maximum leaf area and trunk temperature were found to be an important control on radiation energy budget. The trunk temperature was either equal or warmer than air temperature during most of the growing season because the canopy could absorb a substantial amount of sunlight. After autumn (after the middle of October), the trunk temperature was consistently cooler than air temperature.

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 -)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

Study on the LOWTRAN7 Simulation of the Atmospheric Radiative Transfer Using CAGEX Data. (CAGEX 관측자료를 이용한 LOWTRAN7의 대기 복사전달 모의에 대한 조사)

  • 장광미;권태영;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.99-120
    • /
    • 1997
  • Solar radiation is scattered and absorbed atmospheric compositions in the atmosphere before it reaches the surface and, then after reflected at the surface, until it reaches the satellite sensor. Therefore, consideration of the radiative transfer through the atmosphere is essential for the quantitave analysis of the satellite sensed data, specially at shortwave region. This study examined a feasibility of using radiative transfer code for estimating the atmospheric effects on satellite remote sensing data. To do this, the flux simulated by LOWTRAN7 is compared with CAGEX data in shortwave region. The CAGEX (CERES/ARM/GEWEX Experiment) data provides a dataset of (1) atmospheric soundings, aerosol optical depth and albedo, (2) ARM(Aerosol Radiation Measurement) radiation flux measured by pyrgeometers, pyrheliometer and shadow pyranometer and (3) broadband shortwave flux simulated by Fu-Liou's radiative transfer code. To simulate aerosol effect using the radiative transfer model, the aerosol optical characteristics were extracted from observed aerosol column optical depth, Spinhirne's experimental vertical distribution of scattering coefficient and D'Almeida's statistical atmospheric aerosols radiative characteristics. Simulation of LOWTRAN7 are performed on 31 sample of completely clear days. LOWTRAN's result and CAGEX data are compared on upward, downward direct, downward diffuse solar flux at the surface and upward solar flux at the top of the atmosphere(TOA). The standard errors in LOWTRAN7 simulation of the above components are within 5% except for the downward diffuse solar flux at the surface(6.9%). The results show that a large part of error in LOWTRAN7 flux simulation appeared in the diffuse component due to scattering mainly by atmispheric aerosol. For improving the accuracy of radiative transfer simulation by model, there is a need to provide better information about the radiative charateristrics of atmospheric aerosols.