• Title/Summary/Keyword: downstream effects

Search Result 659, Processing Time 0.026 seconds

The Effects of Advanced Reburning with SNCR on NOx and CO Reduction (무촉매 환원법이 적용된 응용 재연소 방법에 의한 NOx와 CO의 저감 효과)

  • Lee Chang-Yeop;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.788-795
    • /
    • 2006
  • From the view of the environmental protection against the use of fossil fuels, the great of efforts have been exerted to find an effective method which is not only pollutant reduction but also high thermal efficiency. Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the hybrid effects of reburning and selective non-catalytic reaction (SNCR) on $NO_x/CO$ reduction from oxygen-enriched LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and $NO_x$ generation were observed to increase by oxygen-enriched combustion, but due to its hybrid effects of reburning and SNCR, $NOx/CO$ concentration in the downstream has considerably decreased.

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.

Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time

  • Kim, Chan Joong;Kim, Bo Mi;Kim, Cheon Suk;Baek, Jung Yeon;Jung, In Chan
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.79-87
    • /
    • 2020
  • Objectives: Ginsenosides found in ginseng, and the hydrolysates derived from their conversion, exhibit diverse pharmacological characteristics [1]. These have been shown to include anti-cancer, anti-angiogenic, and anti-metastatic effects, as well as being able to provide hepatic and neuroprotective effects, immunomodulation, vasodilation, promotion of insulin secretion, and antioxidant activity. Therefore, the purpose of this study was to examine how quickly the ginsenosides decompose and what kinds of degradation products are created under physicochemical processing conditions that don't involve toxic chemicals or other treatments that may be harmful. Methods: The formation of ginsenoside-Rg2 and ginsenoside-Rg3 was examined. These demonstrated diverse pharmacological effects. Results: We also investigated physicochemical factors affecting their conversion. The heating temperatures and times yielding the highest concentration of ginsenosides (-Rb1, -Rb2, -Rc, -Rd, -Rf, -Rg1, and -Re) were examined. Additionally, the heating temperatures and rates of conversion of these ginsenosides into new 'ginseng saponins', were examined. Conclusion: In conclusion, obtained provide us with effective technology to control the concentration of both ginsenosides and the downstream converted saponins (ginsenoside-Rg2, Rg3, Rg5, and Rk1 etc.), as well as identifying the processing conditions which enable an enrichment in concentration of these compounds.

Inhibitory effects of Kirengeshoma koreana Nakai on Melanogenesis in B16F10 melanoma cells

  • Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Im, Jong-Yun;Nam, Su-Hwan;Kim, Do-Wan;Lee, Seung-Hyun;Park, Jae-Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.117-117
    • /
    • 2019
  • Kirengeshoma koreana Nakai (K. koreana)was Saxifragaceae and rare plants in Korea, which is classified as an Critically Endangered (CR) species in Korea. Therefore, most of the studies on it were ecological and taxonomic, and there are no studies on biological activity. In this study, we evaluated the whitening activity of K. koreana extract (KKE). Melanogenesis Inhibitory effects were demonstrated by western-bot and RT-PCR for the effects of KKE on MITF, tyrosinase, TRP-1 and TRP-2 in IBMX-treated B16F10 melanoma cells. IBMX were reported as melanin synthesis enhancers. It could increase intracellular melanin synthesis by activation of the microphthalmia-associated transcription factor (MITF) signaling pathway. KKE showed no cytotoxicity at B16F10. In addition, KKE effectively inhibited the protein and mRNA levels of MITF, tyrosinase, TRP-1 and TRP-2. In conclusion, KKE inhibited melanin synthesis by inhibiting the expression of MITF and its downstream pathways tyrosinase, TRP-1 and TRP-2. Therefore, it was confirmed that K. koreana is a valuable resource for functional cosmetic and biomaterials.

  • PDF

Distortion of Resistivity Data Due to the 3D Geometry of Embankment Dams (저수지 3차원 구조에 의한 전기비저항 탐사자료의 왜곡)

  • Cho, In-Ky;Kang, Hyung-Jae;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of embankments distorts significantly resistivity data measured on anywhere of the dam. In this study, we analyse the influence from 3D effects created by specific dam geometry through the 3D finite element modeling technique. We compared 3D effects when resistivity surveys are carried out on the upstream slope, left edge of the crest, center of the crest, right edge of the crest and downstream slope. We ensure that 3D effect is greatly different according to the location of the survey line and data obtained on the downstream slope are most greatly influenced by 3D dam geometry. Also, resistivity data are more influenced by the electrical resistivity of materials constituting reservoir than 3D effects due to specific dam geometry. Furthermore, using resistivity data synthesized with 3D modeling program for an embankment dam model with leakage zone, we analyse the possibility of leakages detection from 2D resistivity surveys performed along the embankment dam.

Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea (옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정)

  • Sin,Jae-Gi;Kim,Dong-Seop;Lee,Hye-Geun;Maeng,Seung-Jin;Hwang,Sun-Jin
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

WRF Sensitivity Experiments on the Formation of the Convergent Cloud Band in Relation to the Orographic Effect of the Korean Peninsula (한반도 지형이 대상수렴운의 생성에 미치는 영향에 관한 WRF 민감도 실험)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.51-66
    • /
    • 2015
  • This study was conducted to perform various sensitivity experiments using WRF (Weather Research and Forecasting) model in order to determine the effects of terrains of the Korean Peninsula and the land-sea thermal contrast on the formation and development of the convergent cloud band for the cases of 1 February 2012. The sensitivity experiments consist of the following five ones: CNTL experiment (control experiment), and TMBT experiment, BDMT experiment and ALL experiment that set the terrain altitude of Taeback Mountains and Northern mountain complex as zero, respectively, and the altitude of the above-mentioned two mountains as zero, and LANDSEA experiment that set to change the Korean Peninsula into sea in order to find out the land-sea thermal contrast effect. These experiment results showed that a cold air current stemming from the Siberian high pressure met the group of northern mountains with high topography altitude and was separated into two air currents. These two separated air currents met each other again on the Middle and Northern East Sea, downstream of the group of northern mountains and converged finally, creating the convergent cloud band. And these experiments suggested that the convergent cloud band located on the Middle and Northern East Sea, and the cloud band lying on the southern East sea to the coastal waters of the Japanese Island facing the East Sea, were generated and developed by different dynamical mechanisms. Also it was found that the topography of Taeback Mountains created a warm air advection region due to temperature rise by adiabatic compression near the coastal waters of Yeongdong Region, downstream of the mountains. In conclusion, these experiment results clearly showed that the most essential factor having an effect on the generation and development of the convergent cloud band was the topography effect of the northern mountain complex, and that the land-sea thermal contrast effect was insignificant.

The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets (평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정)

  • Wu, Seong-Je;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.

Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine (Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구)

  • Gong, Ho-Jeong;Hwang, In-Goo;Ko, A-Hyun;Myung, Cha-Lee;Park, Sim-Soo;Lim, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

Betulinic Acid Induces Apoptosis in Humam Mucoepidermoid Carcinoma Cells Through Regulating Specificity Protein 1 and Its Downstream Molecule, Survivin

  • Lee, Jung-Eun;Jung, Ji-Youn;Yoo, Hyun-Ju;Cho, Sung-Dae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • High-grade mucoepidermoid carcinomas (MECs) have difficulty in cure and 5-year survival rate is quiet low. Therefore, we need new therapeutic agents and molecular targets. Betulinic acid (BA) is one of the materials which is easily found in the world and shows tumor-suppress effects in various tumor types. In addition, many kinds of normal tissues have a resistance to BA treatment. In this study, we investigated the anti-proliferative activity of BA and its molecular targets in MC-3 human MEC cells using western blot analysis and DAPI staining. BA inhibited cell viability and induced apoptosis in MC-3 cells. It affected Specificity protein 1 (Sp1) and its downstream molecule, survivin whereas it did not affect myeloid cell leukemia-1 (Mcl-1). Therefore, we suggest that BA can be a potential anti-cancer drug candidate regulating Sp 1 and survivin to exert apoptotic cell death.