• Title/Summary/Keyword: downbursts

Search Result 24, Processing Time 0.02 seconds

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.

Numerical characterization of downburst wind field at WindEEE dome

  • Ibrahim, Ibrahim;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Downbursts are acknowledged for being a major loading hazard for horizontally-extending structures like transmission line systems. With these structures being inherently flexible, it is important to characterize the turbulence associated with the wind flow of downburst events being essential to quantify dynamic excitations on structures. Accordingly, the current study numerically characterizes the downburst wind field of open terrain simulated at the Wind Engineering, Energy and Environment (WindEEE) dome testing facility at The University of Western Ontario in Canada through a high-resolution large eddy simulation (LES). The study validates the numerical simulation considering both the mean and the turbulent components of the flow. It then provides a detailed visual description of the flow at WindEEE through the capabilities enabled by LES to identify the key factors affecting the flow. The study also presents the spatial distribution of turbulence intensities and length scales computed from the numerical model and compares them with previous values reported in the literature. The comparison shows the ability of the downburst simulated at WindEEE to reproduce turbulence characteristics similar to those reported from field measurements. The study also indicates that downburst turbulence is well-correlated circumferentially which imposes high correlated loads on horizontally-distributed structures such as transmission lines.

Recent Brazilian research on thunderstorm winds and their effects on structural design

  • Riera, Jorge D.;Ponte, Jacinto Jr.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.111-129
    • /
    • 2012
  • Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by sypnoptic events. Wind effects due to other phenomena, such as thunderstorm downbursts, are simply neglected. In this paper, results of recent and ongoing research on this topic in Brazil are presented. The model of the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS), proposed by Ponte and Riera for engineering applications, is first described. This model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters are related to meteorological variables, which are susceptible of statistical assessment. An application of the model in the simulation of the wind climate in a region sujected to both EPS and TS winds is discussed next. It is shown that, once the relevant meteorological variables are known, the simulation of the wind excitation for purposes of design of transmission lines, long-span crossings and similar structures is feasible. Complementing the theoretical studies, wind velocity records during a recent TS event in southern Brazil are presented and preliminary conclusions on the validity of the proposed models discussed.

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet

  • Jubayer, Chowdhury;Romanic, Djordje;Hangan, Horia
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.315-329
    • /
    • 2019
  • Non-synoptic winds have distinctive statistical properties compared to synoptic winds and can produce different wind loads on buildings and structures. The current study uses the new capabilities of the WindEEE Dome at Western University to replicate a stationary non-Gaussian wind event recorded at the Port of La Spezia in Italy. These stationary non-Gaussian wind events are also known as intermediate wind events as they differ from non-stationary non-Gaussian events (e.g., downbursts) as well as stationary Gaussian events (e.g., atmospheric boundary layer (ABL) flows). In the present study, the wind loads on a typical low-rise building are investigated for an intermediate wind event reproduced using a continuous radial impinging jet (IJ) at the WindEEE Dome. For the same building model, differences in wind loads between ABL and IJ are also examined. Wind loads on different surface zones on the building, as defined in the ASCE code for design loads, are also calculated and compared with the code.

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

A remote long-term and high-frequency wind measurement system: design, comparison and field testing

  • Zhao, Ning;Huang, Guoqing;Liu, Ruili;Peng, Liuliu
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • The wind field measurement of severe winds such as hurricanes (or typhoons), thunderstorm downbursts and other gales is important issue in wind engineering community, both for the construction and health monitoring of the wind-sensitive structures. Although several wireless data transmission systems have been available for the wind field measurement, most of them are not specially designed for the wind data measurement in structural wind engineering. Therefore, the field collection is still dominant in the field of structural wind engineering at present, especially for the measurement of the long-term and high-frequency wind speed data. In this study, for remote wind field measurement, a novel wireless long-term and high-frequency wind data acquisition system with the functions such as remote control and data compression is developed. The system structure and the collector are firstly presented. Subsequently, main functions of the collector are introduced. Also novel functions of the system and the comparison with existing systems are presented. Furthermore, the performance of this system is evaluated. In addition to as the wireless transmission for wind data and hardware integration for the collector, the developed system possesses a few novel features, such as the modification of wind data collection parameters by the remote control, the remarkable data compression before the data wireless transmission and monitoring the data collection by the cell phone application. It can be expected that this system would have wide applications in wind, meteorological and other communities.

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.