• Title/Summary/Keyword: double-peak normal distribution

Search Result 6, Processing Time 0.02 seconds

Estimation of Probability Density Function of Tidal Elevation Data (조위자료의 확률밀도함수 추정)

  • Hong Yeon Cho;Jeong Shin Taek;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.152-161
    • /
    • 2004
  • Double-peak normal distribution function was suggested as the probability density function of the tidal elevation data in Korean coastal zone. Frequency distribution analysis was carried out using hourly tidal elevation data of the ten tidal gauging stations, i.e., Incheon, Kunsan, Mokpo, Cheju, Yeosu, Masan, Gadeokdo, Pusan, Pohang, and Sokcho which were served through the Internet Homepage by the National Ocean Research Institute. Based on the RMS error and $R^2$ value comparison analysis, it was found that this suggested function as the probability density function of the tidal elevation data was found to be more appropriate than the normal distribution function. The parameters of the double-peak function were estimated optimally using Levenberg-Marquardt method which was modified from the Newton method. The estimated parameters were highly correlated with the non-tidal constants of the tidal gauging stations.

Analysis of the Mean and Standard Deviation due to the Change of the Probability Density Function on Tidal Elevation Data (조위의 확률밀도함수 변화에 따른 평균 및 표준편차 분석)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Lee, Khil-Ha;Kim, Tae-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • In the process of the probabilistic-based design on the coastal structures, the probability density function (pdf) of tidal elevation data is assumed as the normal distribution function. The pdf shape of tidal elevation data, however, is better-fitted to the double-peak normal distribution function and the equivalent mean and standard deviation (SD) estimation process based on the equivalent normal distribution is required. The equivalent mean and SD (equivalent parameters) are different with the mean and SD (normal parameters) estimated in the condition that the pdf of tidal elevation is normal distribution. In this study, the difference, i.e., estimation error, between equivalent parameters and normal parameters is compared and analysed. The difference is increased as the tidal elevation and its range are increased. The mean and SD differences in the condition of the tidal elevation is ${\pm}400cm$ are above 100 cm and about 80~100 cm, respectively, in Incheon station. Whereas, the mean and SD differences in the condition of the tidal elevation is ${\pm}60cm$ are very small values in the range of 2~4 cm, in Pohang station.

Statistical Characteristics of the Non-tidal Components Data in Korean Coasts (한반도 연안 비조석 성분자료의 통계적 특성)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Yoon, Jong-Tae;Kim, Chang-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.112-123
    • /
    • 2006
  • Double-peak normal distribution function was suggested as the probability density function of the non-tidal components (NTC) data in Korean coastal zone. Frequency distribution analysis of the NTC data was carried out using hourly tidal elevation data of the ten tidal gauging stations, i.e., Incheon, Gunsan, Mokpo, Jeju, Yeosu, Masan, Gadeokdo, Busan, Pohang, and Sokcho which were served through the Internet Homepage by the National Ocean Research Institute. NTC data is defined as the difference between the measured tidal elevation data and the astronomical tidal elevation data using 64 tidal constituents information. Based on the RMS error and R2 value comparison analysis, it was found that this suggested function as the probability density function of the NTC data was found to be more appropriate than the normal distribution function. The parameters of the double-peak function were estimated optimally using Levenberg-Marquardt method which was modified from the Newton method. The standard deviation and skewness coefficient were highly correlated with the non-tidal constants of the tidal gauging stations except Mokpo, Jeju and Sokcho stations.

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Estimation of Probability Density Function of Tidal Elevation Data using the Double Truncation Method (이중 절단 기법을 이용한 조위자료의 확률밀도함수 추정)

  • Jeong, Shin-Taek;Cho, Hong-Yeon;Kim, Jeong-Dae;Hui, Ko-Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • The double-peak normal distribution function (DPDF) suggested by Cho et al.(2004) has the problems that the extremely high and low tidal elevations are frequently generated in the Monte-Carlo simulation processes because the upper and lower limits of the DPDF are unbounded in spite of the excellent goodness-offit results. In this study, the modified DPDF is suggested by introducing the upper and lower value parameters and re-scale parameters in order to remove these problems. These new parameters of the DPDF are optimally estimated by the non-linear optimization problem solver using the Levenberg-Marquardt scheme. This modified DPDF can remove completely the unrealistically generated tidal levations and give a slightly better fit than the existing DRDF. Based on the DPDF's characteristic power, the over- and under estimation problems of the design factors are also automatically intercepted, too.

Study of the welding monitor and characteristics according to a change in Gas mixture by FCAW (FCAW의 혼합가스 변화에 따른 용접 모니터링과 특성에 관한 연구)

  • Lim, Byung-Chul;Kang, Chul-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5933-5938
    • /
    • 2014
  • In this study, the effect of varying the mixture gas during FCA welding was studied for an Atos 60 test piece. To examine the characteristics of welding, the weldability of the material was checked before welding and online monitoring was performed to examine the mechanical properties after welding. The mixture Ar 80% + $CO_2$ 20% at low speed gave very elegant beads with very little spatter. 100% $CO_2$ gave rise to high spatter generation. For Ar 80% + $CO_2$ 20%, the low current region due to the normal short circuits created spatter, which was more than double for 100% $CO_2$. This peak distribution occurred due to the instability of the arc. The tensile test result for Ar 80% + $CO_2$ 20%, Ar 90%+ $CO_2$ 10% and $CO_2$ 100% at 511MPa, 507MPa, and 469MPa showed that the yield strength was improved by 8.1 and 8.9% for 80%+ $CO_2$ 20% and Ar 90%+ $CO_2$ 10%, respectively, compared to 100% $CO_2$. The tensile test result at 622MPa, 609MPa, and 581MPa showed that the yield strength was improved by 7.0% for both the mixture gas compared to 100% $CO_2$.