• Title/Summary/Keyword: double-layered armor

Search Result 2, Processing Time 0.015 seconds

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

Effects of Roughness and Vertical Wall Factors on Wave Overtopping in Rubble Mound Breakwaters in Busan Yacht Harbor

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Kim, Kook Hyun;Shahmirzadi, Mohammad Ebrahim Meshkati;Park, Hong Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.62-69
    • /
    • 2015
  • Coastlines are protected by breakwater structures against the erosion of sand or other materials along beaches due to wave action. This research examined the use of physical modeling to determine the effects of the tetrapod size and vertical walls of a rubble mound on the volume of wave overtopping under irregular wave conditions in coastal areas in Busan Yacht Harbor. In this analysis model, the structures were studied using irregular waves and the JONSWAP wave energy spectrum. To understand the effects of the tetrapod size and heights of the vertical wall, the study considered vertical walls of 0, 1.78, 6.83, and 9.33 cm with armor double layered material tetrapods of 8, 12, 16, and 20 tons. An extensive number of experiments covering a relatively large range of variables enabled a comprehensive discussion. First, in the presence of a short vertical wall, the water level played a key role in the overtopping discharge. In such circumstances, the values of the wave overtopping discharge decreased with increasing freeboard size. In the presence of a tall freeboard and middle, the value of the wave overtopping discharge was equally influenced by the vertical wall factor. Moreover, the tetrapod size decreased by an increase in the vertical wall factor, and relationship between them resulted in a short wall height. From an engineering point of view, considering a small water level may allow the choice of a shorter vertical wall, which would ultimately provide a more economical design.