• Title/Summary/Keyword: double sheet connection

Search Result 3, Processing Time 0.018 seconds

A Study on Shield Effect of Shield Case using SiFe Sheet (규소강판을 이용한 실드케이스의 차폐효과)

  • Shin, Dong-Gyu;Kim, Young-Hak
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • The shield effect of 4 layered shield case was investigated in this paper. The material of the case was non-oriented SiFe sheet with a thickness of 0.5mm. The size of the case was 100mm wide, 100mm high and 300mm long. Relative permeability of SiFe sheet was needed to calculate shield effect. It was obtained from the measurement by a ferrite yoke and from the calculation by eddy current FEM analysis. Three configurations were used to connect both ends of SiFe sheet. First one is a connection by double-welded butt. Second one is to put the sheet the same material above the confronted both ends of the sheet to avoid a leakage magnetic flux. The last one is ideally without any connection. The shield effect of the second one agreed well with the last one and showed the shield effect of -40dB.

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

The behaviour of a new type of connection system for light-weight steel structures applied to roof trusses

  • Kaitila, Olli;Kesti, Jyrki;Makelainen, Pentti
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.17-32
    • /
    • 2001
  • The Rosette-joining system is a completely new press-joining method for cold-formed steel structures. One Rosette-joint has a shear capacity equal to that of approximately four screws or rivets. The Rosette thin-walled steel truss system presents a new fully integrated prefabricated alternative to light-weight roof truss structures. The trusses are built up on special industrial production lines from modified top hat sections used as top and bottom chords and channel sections used as webs which are joined together with the Rosette press-joining technique to form a completed structure easy to transport and install. A single web section is used when sufficient but can be strengthened by double-nesting two separate sections or by using two lateral profiles where greater compressive axial forces are met. An individual joint in the truss can be strengthened by introducing a hollow bolt into the joint hole. The bolt gives the connection capacity a boost of approximately 20%. A series of laboratory tests have been carried out in order to verify the Rosette truss system in practice. In addition to compression tests on individual sections of different lengths, tests have also been done on small structural assemblies and on actual full-scale trusses of a span of 10 metres. Design calculations have been performed on selected roof truss geometries based on the test results, FE-analysis and on the Eurocode 3 and U.S.(AISI) design codes.