• Title/Summary/Keyword: double composite

Search Result 460, Processing Time 0.026 seconds

Cyclic Vehavior of composite Beams with Double-Circular Web Openings (쌍원형 개구부를 가진 합성보의 이력거동)

  • 김원기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • Intentionally weakened girders near the beam-to-colum connection lead ductile failures at the weakened points prior to potential brittle failure at the connection points subjected to strong earthquake. Recent research investigated cyclic behavior of composite beams with a rectangular web opening and find out ductile failure of such beams due to plastic hinge formation of T-section at the four corners of the rectangular opening. But eventual failures of T-sections are resulted from local buckling of T-section having a narrow stem and a narrow bound of plastic hinge formation. This continuing research proposes double-circular opening instead of rectangular one in ofter to improve energy dissipation capacity as well as composite beam strength, Experimental test of two specimens was carried out and its results are compared with those of nonlinear finite element analyses

  • PDF

Growth of $GdVO_4$ composite single-crystal rods by the double-die edge-defined film-fed growth technique

  • Furukawa, Y.;Matsukura, M.;Nakamura, O.;Miyamoto, A.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The growth of composite-structured Nd:$GdVO_4$ single crystal rods by the double die EFG method is reported. Two crucibles are combined with an outer and inner die for ascending of different melt. The composite-structured Nd:$GdVO_4$ single crystal rods with a length of 50 mm and an outer diameter of 5 mm including of inner Nd-doped core region with diameter 3 mm were grown successfully. Nd distribution in the, radial direction has graded profile from result of EPMA. Absorption coefficient in the core region at 808 nm was $42cm^{-1}$. Finally, we demonstrated the laser oscillation using our composite crystal and 2-W output was obtained.

Charge/Discharge Properties of $V_{2}O_{5}$-Flyash Composite electrode for Supercapacitor (Supercapcitor용 $V_{2}O_{5}$-Flyash Composite 전극의 충방전 특성)

  • 김명산;김종욱;구할본;박복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.335-338
    • /
    • 2000
  • Carbon is an attractive candidate for use in eletrochemical supercapacitors that depend on charge storage in the electrode/electrolyte international double layer. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that V$_2$O$_{5}$-flyash-AC composite electrode for supercapacitor. The discharge capacitance of V$_2$O$_{5}$-flyash-AC(70wt%) in 1st and 50th cycle was 18.6F/g and 15.13F/g at current density of 0.5mA/cm$^2$. The discharge process of V$_2$O$_{5}$-flyash (3 : 97)-AC composite electrode is larger than that others.thers.

  • PDF

EnhAnced Electric Double Layer Capacitance of New Poly Sodium 4-tyrenesulfonate Intercalated Graphene Oxide Electrodes

  • Jeong, Hye-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.2-287.2
    • /
    • 2013
  • We synthesized a new composite of poly sodium 4-styrenesulfonate intercalated graphene oxide for energy storage devices by controlling oxidation time in the synthesis of graphite oxide. Specific capacitance was improved from 20 F/g of the previous composites to 88 F/g of the new composite at the current density of 0.3 A/g. The capacitance retention was 94% after 3000 cycles, indicating that the new composites of high cyclic stability, prominent performance as electric double layer capacitor, and even low resistance could be an excellent carbon based electrode for further energy storage devices.

  • PDF

Performance-based Evaluation for Efficiency of Landfill Liner Systems

  • Nguyen, The Bao;Lee, Chul-Ho;Lee, Jong-Sun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.245-254
    • /
    • 2009
  • Efficiency of landfill liners system is usually evaluated based on leakage rate and mass flux. In this study, composite liner systems including the GCL(geosynthetic clay liner) composite liner, the Subtitle D liner, the Wisconsin NR500 liner, and the recently utilized double composite liner, which is a combination of the GCL composite liner and Subtitle D-type liner, have been examined. The leakage rate through circular and long defects in the geomembrane (GM) of the liner system was analyzed with the aids of analytical and numerical methods. For the mass flux criterion, contaminant transport through defects in the GM of landfill liners can be evaluated based on the calculated leakage rates. The diffusion rate of volatile organic compounds through intact landfill liners was evaluated by performing a one-dimensional numerical model. Cadmium and toluene were adoptted in the analyses as typical inorganic and organic substances, respectively, which will be chemical species encountered during landfill operation. The performance-based evaluation indicates that the double composite liner systems are superior to the other types of liner.

  • PDF

Burning Rate Testing of Double Base Solid Propellants using Ultrasound (초음파를 이용한 Double Base형 고체추진제의 연소속도 측정)

  • Song, Sung-Jin;Ko, Sun-Feel;Kim, Hak-Joon;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.247-250
    • /
    • 2006
  • In the previous study, we have developed an ultrasonic measurement system and analysis technique for borning rate testing of solid propellants using ultrasound. And then, using the developed system, burning rate of composite propellants were measured. So, in this study, we performed measurement of double base solid propellant, which has non-linear homing rate as pressure increasing, using the developed system in order to evaluate capability of ultrasonic method. Furthermore, accuracy of measured homing rates using ultrasound was verified by comparison to homing rate measured by the strand burner method.

  • PDF

Dielectric Insulation Properties of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 특성)

  • 백승명;정종만;이현수;한철수;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • High temperature superconductor can only be applied against an engineering specofication that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and AC breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. The Breakdown of LN$_2$ is dominated electrode shape and distance. The influence of pressure on breakdown voltage is discussed with th different electrode. For the electrical insulation design of turn-to-turn insulation for the HTS transformer, we tested breakdown strength of insulation sheet under varying pressure. And we investigated surface flashover properties of LN$_2$ and complex conition of cryogenic gaseous nitrogen(CGN$_2$) obove a LN$_2$ surface. The surface voltage of GFRP was measured as a function of thickness and electrode distance in LN$_2$ and complex condition of CGN$_2$ above a LN$_2$ surface. this research presented information of electrical insulation design for double pancake coil(DPC) type HTS transformer.

Breakdown Properties for Electrical Insulation Design of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 설계를 위한 절연파괴 특성)

  • Baek, Seung-Myeong;Jung, Jong-Man;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.52-57
    • /
    • 2002
  • High temperature superconductors can only be applied against an engineering specification that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and ac breakdown voltage characteristics of liquid nitrogen($LN_{2}$) under HITS pancake coil electrode made by Bi-2223/Ag are studied. Breakdown in $LN_{2}$ is dominated electrode shape and distance. And we investigated AC breakdown properties of $LN_{2}$ and complex conition of cryogenic gaseous nitrogen($CGN_{2}$) obove a $LN_{2}$ surface. Also, the surface voltage of GFRP was measured as a function of thickness and electrode distance in $LN_{2}$ and complex condition of $CGN_{2}$ above a $LN_{2}$ surface. This research presented information of electrical insulation design for double pancake coil type HTS transformer.

  • PDF

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints (복합재-알루미늄 양면겹치기 조인트를 이용한 접착제의 극저온 물성 평가)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • In the development of a cryogenic propellant tank, the proper selection of adhesives to bond composite and metal liner is important for the safety of operation. In this study, 3 types of adhesives were tested for the ability to bond CFRP composites developed for cryogenic use and aluminum alloy (Al 6061-T6) for lining the tank using double-lap joint specimens. The double-lap joint specimens were tested inside an environmental chamber at room temperature and cryogenic temperature ($-150^{\circ}C$) respectively to compare the bond strength of each adhesive and fracture characteristics. The material properties with temperature of component materials of double-lap joints were measured. In addition, ABAQUS was used for the purpose of analyzing the experimental results.