• Title/Summary/Keyword: dose rate

Search Result 3,174, Processing Time 0.027 seconds

A Study on the Evaluation of Surface Dose Rate of New Disposal Containers Though the Activation Evaluation of Bio-Shield Concrete Waste From Kori Unit 1

  • Kang, Gi-Woong;Kim, Rin-Ah;Do, Ho-Seok;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g-1 60Co and 2.63×105 Bq·g-1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr-1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr-1) as per global standards.

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

PRIMORDIAL RADIONUCLIDES DISTRIBUTION AND DOSE EVALUATION IN UDAGAMANDALAM REGION OF NILGIRIS IN INDIA

  • Manikandan, N.Muguntha;Selvasekarapandian, S.;Sivakumar, R.;Meenakshisundaram, V.;Raghunath, V.M.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • The activity concentration of primordial radionuclides i.e., $^{238}U$ series, $^{232}Th$ series and $^{40}K$, in soil samples collected from Udagamandalam environment, have been measured by employing NaI (Tl) Gamma ray Spectrometer. The absorbed gamma dose rate has also been simultaneously measured by using both Environmental Radiation Dosimeter at each soil sampling location (ambient gamma dose) as well as from the gamma dose derived from the activity concentration of the primordial radionuclides. The results of activity concentration of each radio nuclides in soil, absorbed dose rate in air due to soil activity and possible cosmic radiation at each location along with human effective dose equivalent for Udagamandalam environment are presented and discussed.

  • PDF

Prediction of drug-Drug Interaction During Oral Absorption of Carrier-Mediated Compounds in Humans

  • Oh, Doo-Man;Gordon L. Amidon
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.364-370
    • /
    • 1994
  • A microscopic mass balance approach has been developed to estimate the extent and rate of absorption for camier-mediated comounds. For the case competitive inhibition in the presence of an inhibitor which shares the same camier, the fraction dose absorbed (F) and absorption rate constant ($K_a$) of a drug can be calculated from its concentration profile in the intestinal lumen. Absorption parameters obtained by single-pass perfusion experiments were used in the simultaion of the absorption of some aminopenicilins. Predicted fractions dose absorbed and absorption rate constants of ampicilin and amoxicilin were significantly reduced in the presence of a 6-times higher molar dose of cyclacilin. The drug-drug interactions on the competitive absroption of camier-mediated compounds were determined with regard to F and $K_a$. Predicted decreases in F for some aminopenicilins corrlated well with decrease in the urinary recovery in humans reported in the literature. Predicted decrease in the mean absorption rate constant ($\barK_a$) explain the delays in the time of peak plasma concentration ($T_{max}$) reported in humans.

  • PDF

Dose Calculation for the Buckler Remote Afterloading System (Buchler 강내조사장치의 선량계산에 대한 연구)

  • Chung Weon Kuu;Kim Soo Kon;Kang Jeong Ku;Lee Jeong Ok;Moon Sun Rock;Kim Seung Kon
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 1996
  • Purpose : The dose calculation program for the Buckler type remote after-loading system was developed. This program also can be used to calculate dose for various sealed sources. Materials and Methods : We determined the source length and distribution by dividing the program disk to 72 points. The dose rate for the each program disk and source was calculated. The dose rate table for the xy coordinate was established. The dose rate for the interesting points of the patient were calculated by using this table, We also made isodose curve from this calculations. Results : The storage size for the dose rate table were increased. But the calculation of the dose rate for the patient were carried out rapidly. So we could get real time calculation. Conclusion : By using this program, we could calculate the dose rate for the various points of the patient quickly and accurately. This program will be useful for the treatment with various linear sources.

  • PDF

Characteristics of Tissue Dose of High Dose Rate Ir-192 Source Substitution for Co-60 Brachytherapy Source (코발트-60 선원 대체용 고선량률 Ir-192 선원의 조직선량특성)

  • 최태진;이호준;김옥배
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • To achieve the 2D dose distribution around the designed high dose rate Ir-192 source substitution for Co-60 brachytherapy source, we determined the exposure rate constant and tissue attenuation factors as a large depth as a 20 cm from source center. The exposure rate constant is used for apparent activity in designed source with self-absorption and encapsulation steel wall. The tissue dose delivered from the 4401 segments of 2.5 mm in a diameter and 2.5 mm height of disk-type source layer. In the experiments, the tissue attenuation factors include the tissue attenuation and multiple scattering in a medium surrounding the source. The fitted the polynomial regression with 4th order for the tissue attenuation factors are very closed to the experimental measurement data within ${\pm}$1% discrepancy. The Meisberger's constant showed the large uncertainty in large distance from source. The exposure rate constant 4.69 Rcm$^2$/mCi-hr was currently used for determination of apparent activity of source and air kerma strength was obtained 0.973 for tissue absorbed dose from the energy spectrum of Ir-192 source. In our experiments with designed high dose rate brachytherapy source, the apparent activity of Ir-192 source was delivered from the 54.6 % of actual physical source activity through the self-absorption and encapsulation wall attenuations. This paper provides the 2-dimensional dose tabulation from unit apparent activity in a water medium for dose planning includes the multiple scattering, source anisotropy effect and geometric factors.

  • PDF

Bioassay in BALB/c mice exposed to low dose rate radiation (저선량율 방사선 조사한 BALB/c 마우스에서의 영향평가)

  • Kim, Sung-Dae;Gong, Eun-Ji;Bae, Min-Ji;Yang, Kwang-Mo;Kim, Joong-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.159-166
    • /
    • 2012
  • The present study was performed to investigate the toxicity of low-dose-rate irradiation in BALB/c mice. Twenty mice of each sex were randomly assigned to four groups of five mice each and were exposed to 0 (sham), 0.02, 0.2, or 2 Gy, equivalents to low-dose-rate irradiation to 3.49 $mGy{\cdot}h^{-1}$. Urine, blood, and blood biochemistry were analyzed, and organ weight was measured. The low-dose-rate irradiation did not induce any toxicologically significant changes in mortality, clinical signs, body weight, food and water consumption, urinalysis, and serum biochemistry. However, the weights of reproductive organs including the testis, ovary, and uterus decreased in a dose-dependent manner. Irradiation at 2 Gy significantly decreased the testis, ovary, and uterus weights, but did not change the weights of other organs. There were no adverse effects on hematology in any irradiated group and only the number of neutrophils increased dose dependently. The low-dose-rate irradiation exposure did not cause adverse effects in mice at dose levels of 2 Gy or less, but the reproductive systems of male and female mice showed toxic effects.

Radiation-Induced Grafting of Acrylic Acid onto Polypropylene Fabric in the Presence of Metallic Salt (폴리프로필렌 부직포에 아크릴산의 방사선 그라프트 반응에서 금속염의 효과)

  • Nho, Young Chang;Park, Jong Shin;Jin, Joon-Ha
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.946-953
    • /
    • 1996
  • The effect of absorbed dose, dose rate, cationic salts and solvent on the grafting yield was evaluated when acrylic acid was grafted onto polypropylene fabric by simultaneous irradiation process. Low dose rate when irradiated with the same absorbed dose led to a high grafting yield. On the other hand, the grafting yield increased with dose rate in case the total irradiation times is equal, and the initial rate of grafting was found to be proportional to be 0.74 power of dose rate. $FeSO_4{\cdot}7H_2O$ was found to be the most effective additive for high grafting yield, while inhibiting homopolymer formation. It was impossible to induce radiation grafting without the addition of the certain amount of salt, but the grafting yield decreased with increasing metallic salt.

  • PDF

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Determination of Environmental Radiation Dose Rate in the Southeastern Korea (우리나라 남동지방(南東地方)의 환경방사선(環境放射線) 선량율(線量率)의 결정(決定)(1980년도(年度)))

  • Rho, Chae-Shik;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1980
  • A portable count-ratemeter and a thermoluminescent detector ($CaSO_4:Dy$) have been used to obtain total gamma dose rates at approximately 50 locations during the course of several survey trips in the southeastern Korea. The purposes of these measurement were to provide a future reference data and to establish the approximate range of population exposure to the natural environmental radiation. The natural levels encountered ranged from a low of 14.6 microroentgen per hour to a high of 18.9 microroentgen per hour with a mean of $16.3{\pm}1.0$ microroentgen per hour. Among these results are the relatively high natural dose rate levels in the Masan area and Yangsan-Tongdosa area with the relatively low natural dose rate levels in the Gyeongsan-Cheongdo area and the Samrangjin-Jinyeong-Gimhae area.

  • PDF