• 제목/요약/키워드: dose limit

Search Result 410, Processing Time 0.024 seconds

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan;Jannatul Ferdous;Md Mahidul Haque Prodhan;Ferdoushi Begum
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2050-2056
    • /
    • 2024
  • Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Development of Detailed Korean Adult Eye Model for Lens Dose Calculation

  • Han, Haegin;Zhang, Xujia;Yeom, Yeon Soo;Choi, Chansoo;Nguyen, Thang Tat;Shin, Bangho;Ha, Sangseok;Moon, Sungho;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Background: Recently, the International Commission on Radiological Protection (ICRP) lowered the dose limit for the eye lens from 150 mSv to 20 mSv, highlighting the importance of accurate lens dose estimation. The ICRP reference computational phantoms used for lens dose calculation are mostly based on the data of Caucasian population, and thus might be inappropriate for Korean population. Materials and Methods: In the present study, a detailed Korean eye model was constructed by determining nine ocular dimensions using the data of Korean subjects. The developed eye model was then incorporated into the adult male and female mesh-type reference Korean phantoms (MRKPs), which were then used to calculate lens doses for photons and electrons in idealized irradiation geometries. The calculated lens doses were finally compared with those calculated with the ICRP mesh-type reference computational phantoms (MRCPs) to observe the effect of ethnic difference on lens dose. Results and Discussion: The lens doses calculated with the MRKPs and the MRCPs were not much different for photons for the entire energy range considered in the present study. For electrons, the differences were generally small, but exceptionally large differences were found at a specific energy range (0.5-1 MeV), the maximum differences being about 10 times at 0.6 MeV in the anteroposterior geometry; the differences are mainly due to the difference in the depth of the lens between the MRCPs and the MRKPs. Conclusion: The MRCPs are generally considered acceptable for lens dose calculations for Korean population, except for the electrons at the energy range of 0.5-1 MeV for which it is suggested to use the MRKPs incorporating the Korean eye model developed in the present study.

Residual Patterns of Strobilurin Fungicides in Korean Melon under Plastic Film House Condition (Strobilurin계 살균제의 시설재배 참외 중 잔류 양상)

  • Park, Eun-Jeong;Lee, Ju-Hee;Kim, Tae-Hwa;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2009
  • The strobilurin fungicides, azoxystrobin and kresoxim-methyl, were investigated to know the biological half-lives and dissipation patterns in Korean melon under plastic film house condition. Used pesticides for field application were 20% azoxystrobin of suspension concentrate and 47% kresoxim-methyl of water dispersible granule. Two pesticides were sprayed at recommended and double dose rate. Pesticide residues in Korean melon were analyzed until 14 days after application. The azoxystrobin was analyzed by HPLC equipped with UV detector after cleanup with florisil glass column. Initial residue concentrations of azoxystrobin in Korean melon at recommended and double dose rate were 0.09 mg/kg and 0.14 mg/kg, respectively. Those were less than 0.2 mg/kg maximum residue limit of Korean melon established by KFDA. The biological half-lives of azoxystrobin in Korean melon were 4.7 days at recommended dose rate and 7.8 days at double dose rate. Initial concentrations of kresoxim-methyl which was analyzed by GLC-ECD in Korean melon at recommended and double dose rate were 0.10 mg/kg and 0.23 mg/kg, respectively. Those were less than 1.0 mg/kg, MRL. The biological half-lives of kresoxim-methyl in Korean melon were 4.1 days at recommended dose rate and 4.8 days at double dose rate. The residue amounts of both pesticide was lower than MRL and biological half-lives were not so long. Because the weight of Korean melon under plastic film house condition was fast increased during cultivation.

Exposure Dose of Thyroid, Breast, and Sexual Gland using a Personal Dosimeter in Multiple CT Examinations (다중 CT 검사 시 개인선량계를 이용한 갑상선, 유방, 생식선의 피폭선량)

  • Kim, Hae-Suk;Kim, Jang-Oh;Lee, Yoon-Ji;Heo, Sung-Hoe;Lee, Chang-Ho;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.345-351
    • /
    • 2020
  • In this study, a dose assessment was conducted on the exposure dose of thyroid, breast and sexual gland using a personal dosimeter in multiple CT examinations currently being conducted in health examinations. The dose assessment was measured by attaching TLD and EPD to the locations of the thyroid, breast and sexual gland during CT examinations of Brain, Brain + C-S, Brain + Low lung, Brain + L-S among CT items. The generated dose of equipment, CTDIvol and DLP, was measured. The study found that effective doses were rated 41.7% higher for thyroid TLD in Brain + C-S CT examinations than for the general public, 156% higher for EPD, 10% for breast EPD in Brain + Low Lung CT examinations, 124.4% higher for reproductive TLD and 339.8% higher for Brain + L-S CT examinations. The CTDIvol and DLP analysis results showed that C-S CTDIvol values were higher than the diagnostic reference levels at 0.6%, Low Lung CTDIvol values at 5.7%, DLP values at 11.8% and L-S CTDIvol values at 1.2%. In order to reduce the exposure dose of patients, indiscriminate examination is reduced and dose limit setting is needed in health examination.

Radiological Impact on Decommissioning Workers of Operating Multi-unit NPP (다수호기 원전 운영에 따른 원전 해체 작업자에 대한 방사선학적 영향)

  • Lee, Eun-hee;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • The decommissioning of one nuclear power plant in a multi-unit nuclear power plant (multi-unit NPP) site may pose radiation exposure risk to decommissioning workers. Thus, it is essentially required to evaluate the exposure dose of decommissioning workers of operating multi-unit NPPs nearby. The ENDOS program is a dose evaluation code developed by the Korea Atomic Energy Research Institute (KAERI). As two sub-programs of ENDOS, ENDOS-ATM to anticipate atmospheric transport and ENDOS-G to calculate exposure dose by gaseous radioactive effluents are used in this study. As a result, the annual maximum individual dose for decommissioning workers is estimated to be $2.31{\times}10^{-3}mSv{\cdot}y^{-1}$, which is insignificant compared with the effective dose limit of $1mSv{\cdot}y^{-1}$ for the public. Although it is revealed that the exposure dose of operating multi-unit NPPs does not result in a significant impact on decommissioning workers, closer examination of the effect of additional exposure due to actual demolition work is required. The calculation method of this study is expected to be utilized in the future for planned decommissioning projects in Korea. Because domestic NPPs are located in multi-unit sites, similar situations may occur.

Validation of a Real-Time RT-PCR Method to Quantify Newcastle Disease Virus (NDV) Titer and Comparison with Other Quantifiable Methods

  • Jang, Juno;Hong, Sung-Hwan;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2011
  • A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 ($TCID_{50}$) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.

Exposure to Environmental Endotoxin and Health Effects (환경 중의 엔도톡신 노출 및 건강에 미치는 영향)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.265-278
    • /
    • 2014
  • Microbes such as bacteria, fungi, archaea, protists, and viruses are ubiquitous and people are exposed to them continuously. Endotoxin is a component of the outer membrane of Gram-negative bacteria and a potent proinflammaotry substance. When a person is exposed to environmental endotoxin, an innate immune response is initiated upon the initial recognition and this response produces various inflammatory mediators and recruits inflammatory cells to the exposed tissues. A purified chemical form of endotoxin is called lipopolysaccharide (LPS), and the lipid A portion of the molecule is a biologically active moiety. Exposure to endotoxin may result in various complex health effects depending on time, route, and dose of exposure, as well as host susceptibility. Gene-environment interactions play important roles in health effects of endotoxin exposure, e.g. development or aggravation of asthma. To accurately assess exposure to endotoxin in environmental or epidemiologic studies, methods of sampling, extraction, and analysis must be carefully selected since the selected methods may substantially affect analytical results and there is no internationally-agreed standard method to date. The lack of a standardized method hampers the establishment of exposure-response relationships. While an internationally-agreed health-based exposure limit does not exist, the Dutch Expert Committee on Occupational Safety recently recommended $90EU/m^3$ as a health-based occupational exposure limit. The current article reviews various scientific issues on how we measure environmental endotoxin and the health effects of endotoxin exposure.

The Significance of the Analytical Sciences In Environmental Assessment

  • Chung, Yong;Ahn, Hye-Won
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1079-1087
    • /
    • 1995
  • The quality of human life is directly related to the quality of the environment. To assess environmental quality we must first determine the MCLG(Maximum Contaminant Level Goal), MCL(Maximum Contaminant Level), environmental impact and so on. The MCLG is the concentration at which no known adverse health effects occur. The MCLG is determined by risk assessment identifying which process is hazardous assessing, dose-response, human exposure, and characteristics of risk. With consideration of analytical methods, treatment technology, cost and regulatory impact, the MCL is set as close to the MCLG as possible. In this way, determination of the concentration and national distribution of contaminants is important for assessment of environmental quality The analytical sciences pose potential problems in assessing environmental quality. Continuing improvement in the performance of analytical instruments and operating technique has been lowering the limits of detectability. Contaminant concentration below the detection limit has usually been reported as ND(Not-Detected) and this has often been misunderstood as equivalent to zero. Because of this, more the contaminant concentration in the past was below the detection limit, whereas contaminants can be quantified now even though the contaminant concentration might remain the same or may even have decreased. In addition, environmental sampling has various components due to heterogeneous matrices. These samples are used to overestimate the concentration of the contaminant due to large variability, resulting in excess readings for MCL. In this paper, the significance of the analytical sciences is emphasized in both a conceptual and a technical approach to environmental assessment.

  • PDF