• 제목/요약/키워드: dose gradient

검색결과 112건 처리시간 0.02초

Effects of hydrodynamics and coagulant doses on particle aggregation during a rapid mixing

  • Park, Sang-Min;Heo, Tae-Young;Park, Jun-Gyu;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.365-372
    • /
    • 2016
  • The effects of hydrodynamics and alum dose on particle growth were investigated by monitoring particle counts in a rapid mixing process. Experiments were performed to measure the particle growth and breakup under various conditions. The rapid mixing scheme consisted of the following operating parameters: Velocity gradient (G) ($200-300s^{-1}$), alum dose (10-50 mg/L) and mixing time (30-180 s). The Poisson regression model was applied to assess the effects of the doses and velocity gradient with mixing time. The mechanism for the growth and breakup of particles was elucidated. An increase in alum dose was found to accelerate the particle count reduction. The particle count at a G value of $200s^{-1}$ decreased more rapidly than those at $300s^{-1}$. The growth and breakup of larger particles were more clearly observed at higher alum doses. Variations of particles due to aggregation and breakup of micro-flocs in rapid mixing step were interactively affected by G, mixing time and alum dose. Micro-flocculation played an important role in a rapid mixing process.

Gradient based algorithm을 이용한 multiple slice IMRT optimization (IMRT optimization on multiple slice using gradient based algorithm)

  • 이병용;조병철;이석;정원균;안승도;최은경;김종훈;장혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제9권4호
    • /
    • pp.201-206
    • /
    • 1998
  • 세기변조방사선치료 (Intensity Modulation Radiation Therapy; IMRT) 의 치료계획 목적으로 사용하기 위한 선량최적화 방법을 Gradient based algorithm을 이용하여 개발하였다. 환자의 치료 관심 부위를 포함하는 약 10-30 CT 단면에 대하여 각 단면 별로 선량최적화를 실시하였고, 장기별로 최대 허용선량을 지정하였으며, 표적의 선량은 100$\pm$5 %로 제한하였다. beamlet의 크기는 8$\times$8 $cm^2$으로 제한하였고, beam size가 크지 않으므로 beam diverge는 고려하지 않았다. beamlet 하나가 만드는 선량분포를 미리 계산한 후, 선량중첩방식으로 전체 선량분포를 계산하였다. 고정된 동일평면에 대하여 5방향에서 입사하는 빔에 대한 최적화를 실시하였으며, 그 효용성을 비교하기 위해, 1, 3, 5, 7, 9 방향에 입사하는 빔과 최적화지수를 구하였다. 선량최적화에 소요되는 시간은 대체로 slice 수에 비례하였으며, 계산시간과 최적화지수를 비교할 때 빔의 개수가 3-7개 일 때 가장 적합하였다. 다중단면에 대한 선량최적화를 beam divergence를 고려하지 않을 때, 단일 단면에 대한 선량최적화를 반복 시행함으로써 얻을 수 있었다. 선량최적화의 결과가 선량중심의 위치에 따라 민감하게 변하는 경우가 발생하였으며, 이를 개선하기 위해서는 선량중심의 최적화가 개발될 필요성이 있었다.

  • PDF

2D 어레이 다이오드 검출기를 통한 IMRT 계산선량의 정확성 평가 및 효용성 연구 (Efficiency Study of 2D Diode Array Detector for IMRT Quality Assurance)

  • 김태호;오승종;김민주;정원균;정진범;김재성;김시용;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제22권2호
    • /
    • pp.61-66
    • /
    • 2011
  • 2D 어레이 다이오드 검출기를 이용하여 전립선과 두경부 IMRT 환자(전립선 2사례, 두경부 2사례)를 대상으로 선량계산 격자 크기(calculation grid size)에 따른 계산선량 정확성(dose calculation accuracy)을 평가했으며, 그 결과를 바탕으로 2D 어레이 다이오드가 IMRT 계산선량과 조사선량 검증에 적합한지 여부를 확인했다. 치료계획장치(treatment planning system, TPS)에서 제공되는 4종류의 격자 크기(1.25 mm, 2.5 mm, 5 mm, 10 mm) 별로 계산된 선량과 2D 어레이 다이오드 검출기를 이용하여 얻어진 측정선량을 감마 분석방법을 이용, 비교하는 방식으로 실험을 진행하였으며, 선량분포의 변화 범위에 따른 정확성 변화 또한 확인했다. 3 mm/3%의 평가기준(acceptance criteria)을 적용한 감마 분석방법에서는 10 mm를 제외한 격자 크기 별 평균 통과율(pass rate)에 뚜렷한 차이를 확인할 수 없었으나, 평가기준을 3 mm/3%, 2mm/2%, 1 mm/1%로 세밀하게 적용하였을 경우, 1.25 mm를 제외한 격자크기의 통과율이 각각 5%와 20%, 31.53% 감소하는 것을 확인할 수 있었다. 격자 크기에 따른 선량계산시간은 1.25, 2.5, 5, 10 mm 격자 크기에서 각각 11.5, 4.77, 2.95, 1.5 min 소비됐으며 격자 크기가 2배 증가할수록 선량계산시간은 약 1/2로 감소되는 결과를 확인할 수 있었다. 또한 저경사도영역(low gradient area)과 고경사도영역(high gradient area)을 구분하여 격자 크기영향을 평가하였으며, 격자 크기가 계산선량 정확성에 미치는 효과는 low gradient area보다 high gradient area에서 더 크게 작용한다는 결과를 확인했다. 본 연구의 결과를 종합해 봤을 때 2.5 mm의 격자 크기로 선량계산을 수행하는 것이 계산선량 정확성과 계산시간 면에서 적절한 것으로 여겨지며, high gradient area에 있어서는 가능한 세밀한 격자크기(1.25 mm)를 적용할 것이 권장된다. 또한 이상의 결과가 기존 연구의 이론 및 필름을 이용한 측정과 동일함을 고려해 봤을 때 2D 어레이 다이오드 검출기가 IMRT 계산선량과 조사선량 검증에 적합함을 확인할 수 있었다.

Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

  • Ostheimer, Christian;Hubsch, Patrick;Janich, Martin;Gerlach, Reinhard;Vordermark, Dirk
    • Radiation Oncology Journal
    • /
    • 제34권4호
    • /
    • pp.313-321
    • /
    • 2016
  • Purpose: Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). Materials and Methods: A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. Results: VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8%-88.4% in coplanar, 77.5%-88.2% in non-coplanar IMRT and 82.8%-90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Conclusion: Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성 (Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose)

  • 전항배;박상민;박노백;정경수
    • 상하수도학회지
    • /
    • 제21권2호
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

Comparison of Cost Function of IMRT Optimization with RTP Research Tool Box (RTB)

  • Ko, Young-Eun;Yi, Byong-Yong;Lee, Sang-Wook;Ahn, Seung-Do;Kim, Jong-Hoon;Park, Eun-Kyung
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.65-67
    • /
    • 2002
  • A PC based software, the RTP Research Tool Box (RTB), was developed for IMRT optimization research. The software was consisted of an image module, a beam registration module, a dose calculation module, a dose optimization module and a dose display module. The modules and the Graphical User Interface (GUI) were designed to easily amendable by negotiating the speed of performing tasks. Each module can be easily replaced to new functions for research purpose. IDL 5.5 (RSI, USA) language was used for this software. Five major modules enable one to perform the research on the dose calculation, on the dose optimization and on the objective function. The comparison of three cost functions, such as the uncomplicated tumor control probability (UTCP), the physical objective function and the pseudo-biological objective function, which was designed in this study, were performed with the RTB. The optimizations were compared to the simulated annealing and the gradient search optimization technique for all of the optimization objective functions. No significant differences were found among the objective functions with the dose gradient search technique. But the DVH analysis showed that the pseudo-biological objective function is superior to the physical objective function when with the simulated annealing for the optimization.

  • PDF

인조혈관 동정맥루의 혈액 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구 (NUMERICAL STUDY ON BLOOD FLOW CHARACTERISTICS IN A ARTERIOVENOUS GRAFT WITH DELIVERED DOSE DURING HEMODIALYSIS)

  • 김재열;노경철;유홍선
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.84-91
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics through arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

혈액 투석 시 주사침에서의 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구 (Numerical Study on Blood Flow Characteristics in a Arteriovenous Graft with Delivered dose During Hemodialysis)

  • 김재열;노경철;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.469-476
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics though arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

  • PDF

선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인 (Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator)

  • 박경란;김계준;추성실;이종영;조철우;이창걸;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF