• Title/Summary/Keyword: dose equivalent

Search Result 524, Processing Time 0.026 seconds

Aluminum Equivalent Filter As an Inexpensive Alternative to the Niobium Filter in Reducing Patient Dose (환자에게 주는 선량을 감소시켜주는 니오비움 필터의 대체물로서의 저렴한 알루미늄 필터)

  • Kim, Chang-Sean
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 1995
  • A 50 $\mu\textrm{m}$ thick niobium filter and its quantitatively determined aluminum equivalent filter were evaluated for effects on entrance skin dose, image quality, and x-ray tube loading for three different tube voltages in radiology. There was no significant difference in the reducion in entrance skin dose and increase in tube loading between two filters while keeping radiographic contrast on the film. For the clinical use of the aluminum equivalent filter as an alternative to the niobium filter in radiology, aluminum equivalent filter thickness at the mid energy range of radiology, 90 kVp, was measured and the filter was applied to the other kVp values, 73 and 125 kVps, to evaluate the effect on the entrance skin dose and tube loading. There was no significant difference between two filter cases at the selected kVp. The aluminum filter with equivalent thickness can be used as an inexpensive alternative to the niobium filter.

  • PDF

EQUIVALENT DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM CEPHALOMETRIC RADIOGRAPHY TO CRITICAL ORGANS (두부규격방사선사진 촬영시 주요 장기의 등가선량, 유효선량 및 위험도)

  • Kang Seong-Sook;Cho Bong-Hae;Kim Hyun-Ja
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.309-318
    • /
    • 1995
  • In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites(18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The results were as follows: 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland(3.6pSv) and the next highest dose was that received by the bone marrow(3pSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland(2pSv) and the next highest dose was that received by the bone marrow(1.8pSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland(31A p Sv) and the next highest dose was that received by the salivary gland(13.3 p Sv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were $0.72{\times}10^{-6}$, $0.49{\times}10^{-6}$ and $3.51{\times}10^{-6}$, respectively

  • PDF

Review of International Research Cooperation Results for Intercomparison of Luminescence Dating (루미네선스 연대측정 상호비교를 위한 국제공동연구 결과 고찰)

  • Jin Cheul Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • The Risø Research Institute in Denmark conducted the luminescence dating intercomparison project, which derives equivalent dose, annual dose, and absolute age results for each laboratory from the same sample, and compares the results between laboratories. This project was carried out from 2006 to 2012. In this project, 30 international laboratories worldwide participated, including the luminescence laboratory at the Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result of the project's synthesis, the average value of the results generally shows an over-dispersion value between laboratories of about 13%. The equivalent dose value obtained through the provided quartz analyzed in KIGAM shows results almost identical to the final equivalent dose value of the project. On the other hand, the equivalent dose value obtained from self-extracted quartz analyzed in KIGAM shows a difference of about 0.9 Gy from the final result of the project, which is thought to be due to the difference in particle size of the separated quartz. This international joint research project is the first large-scale international joint study related to luminescence dating and is expected to have contributed to the reliability and use of luminescence dating internationally.

Comparison and validation of Brass mesh bolus using tissue equivalent bolus in the breast cancer radiotherapy (유방암 방사선치료시 조직등가보상체와의 비교를 통한 Brass mesh bolus의 유용성 평가)

  • Bong, Juyeon;Kim, Kyungtae;jeon, Mijin;Ha, Jinsook;Shin, Dongbong;Kim, Seijoon;Kim, Jongdae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2017
  • Purpose: In breast cancer radiotherapy, brass mesh bolus has been recently studied to overcome disadvantage of conventional bolus. The purpose of this study is to investigate the stability of first introduced the brass mesh in the country, and evaluate the skin surface dose of that. Materials and Methods: The measurement of skin surface dose was evaluated to verify similar thickness of the Brass mesh bolus that compared conformal tissue equivalent bolus with 5 mm thickness. We used 6 MV photons on an ELEKTA VERSA linear accelerator and optically stimulated luminescent dosimeter (OSLD). In addition, two opposed beam using IMRT phantom was applied to comparative study of brass mesh bolus between tissue equivalent bolus. Results: The results showed that similar thickness of the Brass mesh bolus was 3 mm compared with 5 mm tissue equivalent bolus by measuring the skin surface dose of solid phantom. The surface dose for IMRT thorax phantom using 3 mm brass mesh bolus was about 1.069 times greater than that using tissue equivalent bolus. Conclusion: In this study, we found that the brass mesh bolus improved better reduction of skin sparing effect and dose uniformity than tissue equivalent bolus. However evaluation for various clinic cases should be investigated.

  • PDF

A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography (복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구)

  • Kim, Jung-Min;Hayashi, Taro;Ishida, Yuji;Sakurai, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea (한국인의 라돈-222 자핵종 호흡 실효선량당량 평가)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • Effective dose equivalents resulting from inhalation of indoor radon-222 daughters at 12 residential areas in Korea were assessed by a simple mathematical lung dosimetry model based on the measurements of long-term averaged radon concentrations at 340 dwellings. The long-term averaged indoor radon-222 concentrations and corresponding eqilibrium equivalent radon $concentration(EEC_{Rn})$ measured by passive time-integrating CR-39 radon cups are in the range of $33.82{\sim}61.42Bq/m^3(median\;:\;48.90Bq/m^3)$ and of $13.53{\sim}24.57Bq/m^3(median\;:\;19.55Bq/m^3)$, respectively. The effective dose equvalent conversion factor for the exposure to unit $EEC_{Rn}$ derived in this study was estimated $1.07{\times}10^{-5}mSv/Bq\;h\;m^{-3}$ for a reference adult and agreed well with those recommended by the ICRP and UNSCEAR. The annual average dose equivalent to the lung $(H_{LUNG})$ from inhalation exposure to measured $EEC_{Rn}$ was estimated to be 20.90 mSv and resulting effective dose $equivalent(H_E)$ was to be 1.25 mSv, which is about 50% of the natural radiation exposure of 2.40 mSv/y to the public reported by the UNSCEAR.

  • PDF

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Finger Doses Received during $^{99m}Tc$ Injections Calculated with GEANT4 (GEANT4를 이용한 $^{99m}Tc$ 주입시 손가락 선량계산)

  • Han, Dong-Hyun;Kang, Sang-Koo;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • To estimate the finger dose absorbed by $^{99m}Tc$ injection, simulations are carried out to calculate the dose equivalent of each finger per second with radioactivity of 370 MBq, based on the GEANT4 simulator. For the $^{99m}Tc$ source of the volume of 0.4mL and the radioactivity of 370 MBq, we obtained the dose equivalent of the right thumb ($0.29\;{\mu}Sv{\cdot}sec^{-1}$), the right index finger ($1.19\;{\mu}Sv{\cdot}sec^{-1}$), the right middle finger ($1.07\;{\mu}Sv{\cdot}sec^{-1}$), the left thumb ($4.36\;{\mu}Sv{\cdot}sec^{-1}$), and the left index finger ($3.37\;{\mu}Sv{\cdot}sec^{-1}$), respectively. This simulation results may serve as a useful data in the prediction of finger dose absorbed by $^{99m}Tc$ injection.

Exposure of the Population in the United States to Ionizing Radiation

  • Carter Melvin W.;Oliver Robert W.
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • The exposure of the population in the United States to ionizing radiation has recently been evaluated by the National Council on Radiation Protection and Measurements (NCRP). This was done by constituting six organizational groups to address various phases of the work and the results of this work are summarized in this article. The article is based on the report, by the same title, which is scheduled for publication by the NCRP in September, 1987. The six organizational groups are titled Radiation Exposure from Consumer Products, Natural Background Radiation, Radiation Associated with Medical Examinations, Radiation Received by Radiation Employees, Public Exposure from Nuclear Power, and Exposure from Miscellaneous Environmental Sources. These titles are descriptive of the subject areas covered by each of these separate groups. The data evaluated are for the years 1977-1984 with the majority of the data being for the period 1980-1982. Summary information is presented and discussed for the number of people exposed to given sources, the effective dose equivalent, the average effective dose equivalent to the U.S. population, and the genetically significant dose equivalent. The average annual effective dose equivalent from all sources to the U.S. population is approximately 3.6 mSv (360 mrem). Exposures to natural sources make the largest contribution to this total. Radon and radon decay products contribute 2.0 mSv (200 mrem) whereas the other naturally occurring radionuclides contribute 1.0 mSv (100 mrem). Among man-made or enhanced sources, medical exposures make the largest additional contributions, namely 0.39 mSv (39 mrem) for diagnosis and 0.14 mSv (14 mrem) for nuclear medicine. It was not possible to evaluate exposures for therapy. Most of the other sources of population exposure, including nuclear power and consumer products, are minor. A possible exception would be the use of tobacco products. These exposures are discussed in relation to a negligible individual risk level of $10{\mu}Sv/y$ (1 mrem/y). The NCRP considers exposures below the negligible individual risk level as trivial and as such should be dismissed.

  • PDF

A absorbed and effective dose from the full-mouth periapical radiography using portable dental x-ray machine and panoramic radiography (ORIGINAL ARTICLE - 이동형 구내방사선촬영기로 촬영한 치근단 방사선촬영과 파노라마방사선촬영의 흡수선량과 유효선량 평가)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.420-430
    • /
    • 2012
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for full-mouth periapical radiography using the portable dental x-ray machine and panoramic radiography Material and Method: Thermoluminescent chips were placed at 25sites throughout the layers of the head and neck of a tissue-equivalent human skull phantom. The man phantom was exposed with the portable dental x-ray machine and panoramic unit. During full-mouth periapical radiography the exposure setting was 60 kVp, 2 mA and 0.15 ~ 0.25 seconds, while during panoramic radiography the selected exposure setting was 72 kVp, 8 mA and 18 seconds. Absorbed dose measurements were obtained and equivalent doses to individual organs were summed using ICRP 103 to calculate of effective dose. Result: In the full-mouth periapical radiography, the highest absorbed dose was recorded at the mandible body follow with submandibular glands and cheek. Using panoramic unit, the highest absorbed dose was parotid glands and the following was back of neck and submandibular glands. The effective dose in full-mouth periapical radiography using portable dental x-ray machine was 46 ${\mu}Sv$. In panoramic radiography, the effective dose was 38 ${\mu}pSv$. Conclusion: It was recommended to panoramic radiography for general check in the head and neck area because that the effect dose in the panoramic radiography was lower than the dose in the full-mouth periapical radiography using portable dental x-ray machine.