• Title/Summary/Keyword: doping aluminum

Search Result 65, Processing Time 0.027 seconds

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis (One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유)

  • Shin, Dong-Geun;Kong, Eun-Bae;Riu, Doh-Hyung;Kim, Young-Hee;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.393-402
    • /
    • 2007
  • Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.

Al Doping Effect of Pd/TiO2 for Improved Hydrogen Detection (수소 감지 성능 향상을 위한 Pd/TiO2 분말에서의 Al 도핑 효과)

  • Lee, Yeongan;Seo, Hyungtak
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.207-210
    • /
    • 2014
  • $TiO_2$ oxide semiconductor is being widely studied in various applications such as photocatalyst and photosensor. Pd/$TiO_2$ gas sensor is mainly used to detect $H_2$, CO and ethanol. This study focus on increasing hydrogen detection ability of Pd/$TiO_2$ in room temperature through Al-doping. Pd/$TiO_2$ was fabricated by the hydrothermal method. Contacting to Aluminum (Al) foil led to Al doping effect in Pd/$TiO_2$ by thermal diffusion and enhanced hydrogen sensing response. $TiO_2$ nanoparticles were sized at ~30 nm of diameter from scanning electron microscope (SEM) and maintained anatase crystal structure after Al doping from X-ray diffraction analysis. Presence of Al in $TiO_2$ was confirmed by X-ray photoelectron spectroscopy at 73 eV. SEM-energy dispersive spectroscopy measurement also confirmed 2 wt% Al in Pd/$TiO_2$ bulk. The gas sensing test was performed with $O_2$, $N_2$ and $H_2$ gas ambient. Pd/Al-doped $TiO_2$ did not response $O_2$ and $N_2$ gas in vacuum except $H_2$. Finally, the normalized resistance ratio ($R_{H2on}/R_{H2off}$) of Pd/Al-doped $TiO_2$ increases about 80% compared to Pd/$TiO_2$.

Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film (비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정)

  • Park, Ji-Young;Lee, Dae-Geon;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1019-1023
    • /
    • 2012
  • In this research, a novel direct-aluminum-heating-induced crystallization method was developed for the purpose of application to solar cells. By applying a constant current of 3 A to an aluminum thin film, a 200-nm-thick amorphous silicon (a-Si) thin film with a size of $1cm{\times}1cm$ can be crystallized into a polycrystalline silicon (poly-Si) thin film within a few tens of seconds. The Raman spectrum analysis shows a peak of 520 $cm^{-1}$, which verifies the presence of poly-Si. After removing the aluminum layer, the poly-Si thin film was found to be porous. SIMS analysis showed that the porous poly-Si thin film was heavily p-doped with a doping concentration of $10^{21}cm^{-3}$. Thermal imaging shows that the crystallization from a-Si to poly-Si occurred at a temperature of around 820 K.

Near IR Luminescence Properties of Er-doped Sol-Gel Films (Er이 도핑된 졸-겔 코팅막의 발광특성)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

Preparation and Properties of Y2O3-Doped ZrO2 Films on Etched Al Foil by Sol-Gel Process

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • The oxide films formed on etched aluminum foils play an important role as dielectric layers in aluminum electrolytic capacitors. $Y_2O_3$-doped $ZrO_2$ (YZ) films were coated on the etched aluminum foils by sol-gel dip coating, and the electrical properties of YZ-coated Al foils were characterized. YZ films annealed at $450^{\circ}C$ were crystallized into a cubic phase, and as the $Y_2O_3$ doping content increased, the unit cell of $ZrO_2$ expanded and the grain size decreased. The etch pits of Al foils were filled by YZ sol when it dried at atmospheric pressure after repeating for several times, but this step could essentially be avoided when being dried in a vacuum. YZ-coated foils indicated that the specific capacitance and dissipation factor were $2-2.5{\mu}F/cm^2$ and 2-4 at 1 kHz, respectively, and the leakage current and withstanding voltage of films approximately 200 nm thick were $5{\times}10^{-4}A$ at 21 V and 22 V, respectively. After being anodized at 500 V, the foils exhibited a specific capacitance and dissipation factor of $0.6-0.7{\mu}F/cm^2$ and 0.1-0.2, respectively, at 1 kHz, while the leakage current and withstanding voltage were $2{\times}10^{-4}-3{\times}10^{-5}A$ at 400 V and 420-450 V, respectively. This suggests that YZ film is a promising dielectric that can be used in high voltage Al electrolytic capacitors.

Effects of Doping in Organic Electroluminescent Devices Doped with a Fluorescent Dye

  • Kang, Gi-Wook;Ahn, Young-Joo;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2001
  • The effect of doping on the energy transfer and charge carrier trapping processes has been studied in organic light-emitting diodes (OLEDs) doped with a fluorescent laser dye. The devices consisted of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD) as a hole transporting layer, tris(8-hydroxyquinoline) aluminum ($Alq_3$) as the host, and a fluorescent dye, 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2) as the dopant. Temperature dependence of the current-voltage-luminescence (I-V-L) characteristics, the electroluminescence (EL) and photoluminescence (PL) spectra are studied in the temperature ranging between 15 K and 300 K. The emission from DCM2 was seen to be much stronger compared with the emission from $Alq_3$, indicative of efficient energy transfer from $Alq_3$ to DCM2. In addition, the EL emission from DCM2 increasd with increasing temperature while the emission from the host $Alq_3$ decreased. The result indicates that direct charge carrier trapping becomes efficient with increasing temperature. The EL emission from DCM2 shows a slightly sublinear dependence on the current density, implying the enhanced quenching of excitons at high current densities due to the exciton-exciton annihilation.

  • PDF

The Electroluminescence Properties of Sq-doped Alq3 Organic Thin Films (Sq가 도핑된 Alq3 유기 박막의 발광 특성)

  • 박종관;김형권;김종택;육재호
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.1-6
    • /
    • 2000
  • We prepared organic light-emitting-diodes (LEDs) with a squarylium(Sq)-doped aluminum quinoline(Alq3) emission layer by the vapor deposition method. We discussed their electro-luminescence(EL) and electrical properties. The EL from Sq had a peak wavelength of 670nm and a half-width of 30nm. Only the EL from So(purely red) could be observed at the doping concentration of over 15mol%, but the luminance were low (0.21cd/$m^2$, 0.1cd/$m^2$) and EL efficiency was under the $10^{-2}$W. Although Sq molecules seemed to act as trap site in Alq3 molecules, they acted as carrier drafts site at doping concentration of over 5mol%.

  • PDF

Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링에 의해 증착한 AZO 박막의 특성)

  • Park, Yi-Seop;Lee, Seung-Ho;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.

Properties of ZnO:Al thin films prepared by a single target sputtering

  • An, Ilsin;Ahn, You-Shin;Taeg, Lim-Won
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1998
  • ZnO:Al films were prepared by an rf magnetron sputtering and targets for the experiments were fabricated by sintering the mixture of ZnO and Al2O3. The most conductive film was obtained from the target with 2.0∼2.2 wt.% of Al2O3. Optical properties studied with spectroscopic ellipsometry showed band gap widening, i.e., the Burstein-Moss shift, with aluminum doping as well as with the elevation of deposition temperature. And it is found that the optical and electrical properties were related to the density of states as well as the variation of donor level. when hydrogen atoms were introduced into the films, the activation energy for the generation of oxygen vacancy was smaller for the films showing higher conductivity. This indicates that the optimum deposition condition for highly conductive ZnO:Al film has strong relation to the optimum doping condition.

  • PDF

Study on the Characteristics and Fabrication of Organic Light Emitting Devices Using the Synthesised Phosphorescent Metal Complexes (인광특성이 있는 금속 착물의 합성과 그 물질을 이용한 소자 제작 및 소자 특성 평가)

  • Kim, Young-Kwan;Sohn, Byoung-Chung;Kim, Jun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Recently, the phosphorescent organic light-emitting devices (OLEDs) have been extensively studied for their high internal quantum efficiency. In this study, we synthesised several phosphorescent metal complexes, and certified their composition using NMR. We also investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, $Ir(ppy)_{3}$. The devices with a structure of indium-tin-oxide(ITO)/N,N'-diphenyl-N,N'-(3-methylphenyI}-1,1'-biphenyl-4,4'-diamine (TPD)/metal complex doped in host materials/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/tris (8-hydroxyquinolinato) Aluminum($Alq_{3}$)/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of tris(2-phenylpyridine)iridium ($Ir(ppy)_{3}$), we fabricated several devices and investigated their characteristics.