• Title/Summary/Keyword: dopamine content

Search Result 62, Processing Time 0.023 seconds

Supplementary prenatal copper increases plasma triiodothyronine and brown adipose tissue uncoupling protein-1 gene expression but depresses thermogenesis in newborn lambs

  • Smith, Stephen B.;Sweatt, Craig R.;Carstens, Gordon E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.506-514
    • /
    • 2020
  • Objective: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. Methods: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6℃) or warm (28℃) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers. Results: Prenatal Cu exposure increased ewe plasma triiodothyronine (T3) and thyroxine concentration (T4) (p<0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T3, T4, glucose, or nonesterified fatty acid concentration (p≥0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p≤0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p≥0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p<0.001), increased BAT cytochrome c oxidase activity (p<0.01), and depressed plasma fatty acid concentrations (p<0.001). Conclusion: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.

Metabolic Topography of Parkinsonism

  • Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.141-151
    • /
    • 2007
  • Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson diorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkisonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, an assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of parkisonism.

Changes in Behavior and the Effect of Chronic-methamphetamine Following Lesions of the Nucleus Accumbens Septi in Rats (측좌핵(側坐核)(Nucleus Accumbens Septi) 파괴가 Methamphetamine의 작용에 미치는 영향)

  • Lee Soon-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.1 s.34
    • /
    • pp.33-39
    • /
    • 1984
  • The present study was undertaken to elucidate the chracteristics in behavioral changes of chronic doses of methamphetamine on open-field activity in rats. On the other hand, the nucleus accumbens septi(NAB), one of the major areas containing mesolimbic dopaminergic terminals, has been considered to be an important site of action for dopaminergic agonists. Therefore, it also designed to investigated influence of NAB lesions. on behavioral effects of chronic-methamphetamine. Caudal and rostral areas of NAB(cr-NAB) were lesioned by applying DC of 3.0 mA for 15 sec., simultaneously. The results were as follows: 1) The rats exhibited hyperactivity after chronic administration of methamphetamine 2) The cr-NAB-lesioned rats showed a significant increase in locomotor activity only at 2 days after NAB lesions 3) Methamphetamine-induced hyperactivity was significantly decreased in the NAB-lesioned rats, and stereotyped behavior was induced instead by the drug. 4) Dopamine content of striatum was significantly decreased and serotonin content of olfactory bulb was significantly increased in NAB-lesioned rats. These results suggest that NAB plays an important role in locomotor activity and methamphetamine-induced hyperactivity.

  • PDF

Inhibitory Effects of the Stem Bark of Albizia julibrissin on Catecholamine Biosynthesis in PC12 Cells

  • Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.2
    • /
    • pp.155-158
    • /
    • 1996
  • The methanol extract of Albizzia julibrissin Durazz. (Leguminosae) was successively partitioned into dichloromethane, ethylacetate, butanol (BuOH) and water fractions, and the effects of the each solvent extract on catecholamine biosynthesis in PC12 cells were investigated. Among them, the BuOH fraction $(5{\mu}g/ml\;medium)$ showed 68.8% and 63.6% inhibition on dopamine and norepinephrine content in PC12 cells, respectively. Tyrosine hydroxylase (TH) activity was also reduced markedly by treatment of the BuOH fraction (41.8% inhibition at $5{\mu}g/ml$ in the medium). Each solvent fraction did not show cytotoxicity towards PC12 cells by trypan blue exclusion test. This result suggests that the BuOH fraction has an inhibitory effect on catecholamine biosynthesis by reducing TH activity in PC12 cells.

  • PDF

Inhibitory Effect of the Root of Coptis japonica on Catecholamine Biosynthesis in PC12 Cells

  • Lee, Myung-Koo;Park, Woo-Kyu;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.269-272
    • /
    • 1994
  • The effect of the root of Coptis japonica (COPT), both dichloromethane soluble $(CH_2Cl_2)$ and insoluble $(H_2O)$ fractions, on catecholamine contents and tyrosine hydorxylase (TH) activity in PC12 cells was investigated. $(CH_2Cl_2){\;}and{\;}H_2O$ fractions showed 21 and 53% inhibitions on dopamine content, respectively, at a ocncentraction of 40 .mu.g/ml in medium : the $(H_2O)$ fraction proveided a grateer inhibitory effect. The TH activity was reduced by the treatment of COPT ($(H_2O)$ fraction). These results suggest that COPT has an inhibitory effect on the catecholamine biosynthesis by the reduction of TH activity in PC12 cells.

  • PDF

Oxidative Modification of Cytochrome c by Tetrahydropapaveroline, an Isoquinoline-Derived Neurotoxin

  • Kang, Jung Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.406-410
    • /
    • 2013
  • Tetrahyropapaveroline (THP) is compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegenerative disorder, such as Parkinson's disease (PD). The aim of this study was to evaluate the potential of THP to cause oxidative damage on the structure of cytochrome c (cyt c). Our data showed that THP led to protein aggregation and the formation of carbonyl compound in protein aggregates. THP also induced the release of iron from cyt c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the THP-mediated cyt c modification and carbonyl compound formation. The results of this study show that ROS may play a critical role in THP-induced cyt c modification and iron releasing of cyt c. When cyt c that has been exposed to THP was subsequently analyzed by amino acid analysis, lysine, histidine and methionine residues were particularly sensitive. It is suggested that oxidative damage of cyt c by THP might induce the increase of iron content in cells and subsequently led to the deleterious condition. This mechanism is associated with the deterioration of organs under neurodegenerative disorder such as PD.

Neuroprotective Effects of Bunsimgieum (분심기음(分心氣飮)의 도파민 세포 보호 효과)

  • Kim, Ro-Sa;Lee, Chang-Hoon;Lee, Jin-Moo;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.2
    • /
    • pp.119-131
    • /
    • 2009
  • Purpose: The depression accompanied with menopuase shows the relation with the dopamine secretion. These studies were undertaken to evaluate the anti- oxidative and neuroprotective effects of Bunsimgieum(BSGE) on dopaminergic neurons. Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3-ethylbenzothiazoline -6-sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of BSGE in vitro, We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The DPPH free radical and the ABTS radical cation inhibition activities were increased at a dose dependent manner. Total polyphenolic content was 0.83%. In SH-SY5Y culture, BSGE significantly increased the decreased cell viability by 6-OHDA at the concentrations of 10${\mu}$g/m${\ell}$ in pre-treatment group, 0.1-200${\mu}$g/m${\ell}$ in post-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in BSGE treated group. In mesencephalic dopaminergic cell culture, the BSGE group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of 5${\mu}$g/m${\ell}$. Conclusion: These results shows that BSGE has antioxidant and neuroprotective effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell. We suggest that BSGE could be useful for the treatment of postmenopausal depression related with the decrease of dopamine.

Inhibition of Tyrosine Hydroxylase by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Lim, Kyo-Whan;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.114-118
    • /
    • 2004
  • It is reported that $(1R,9S)-{\beta}-Hydrastine$ hydrochloride (BHSH) decreased the intracellular dopamine content by inhibiting tyrosine hydroxylase (TH) activity in PC12 cells. In this study, the inhibitory mechanisms on TH activity by BHSH in PC12 cells were investigated. BHSH treatment caused a reduction of TH activity and TH mRNA level in a dose-dependent manner. After the treatment of $20\;{\mu}M$ BHSH, TH activity and TH mRNA content were reduced at 15 min, reached the minimal levels at 6-24 h, and then recovered gradually to the control level. BHSH at $10-50\;{\mu}M$ caused a decrease in the basal intracellular cyclic AMP levels at 10 min in a concentration-dependent manner. In addition, BHSH at $20-100\;{\mu}M$ decreased the basal intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ immediately in a dose-dependent manner. BHSH also inhibited the 56 mM $K^+ $ depolarization-induced elevation in $[Ca^{2+}]_i$, and blocked caffeine-activated store-operated $Ca^{2+}$ entry in PC12 cells. These data suggest that BHSH inhibits TH activity and TH gene expression, in part, through reducing cyclic AMP content and basal $[Ca^{2+}]_i$ in PC12 cells.

Changes of Blood Gases, Plasma Catecholamine Concentrations and Hemodynamic Data in Anesthetized Dogs during Graded Hypoxia Induced by Nitrous Oxide (아산화질소에 의한 점진적 저산소가스 흡입이 혈중 가스치와 Catecholamine치 및 혈역학에 미치는 영향)

  • Kim, Sae-Yeon;Song, Sun-Ok;Bae, Jung-In;Cheun, Jae-Kyu;Bae, Jae-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.97-113
    • /
    • 1998
  • The sympathoadrenal system plays an important role in homeostasis in widely varing external environments. Conflicting findings, however, have been reported on its response to hypoxia. We investigated the effect of hypoxia on the sympathoadrenal system in dogs under halothane anesthesia by measuring levels of circulating catecholamines in response to graded hypoxia. Ten healthy mongreal dogs were mechanically ventilated with different hypoxic gas mixtures. Graded hypoxia and reoxygenation were induced by progressively decreasing the oxygen fraction in the inhalation gas mixture from 21%(control) to 15%, 10% and 5% at every 5 minutes, and then reoxygenated with 60% oxygen. Mean arterial pressure, central venous pressure and mean pulmonary arterial pressure were measured directly using pressure transducers. Cardiac output was measured by the thermodilutional method. For analysis of blood gas, saturation and content, arterial and mixed venous blood were sampled via the femoral and pulmonary artery at the end of each hypoxic condition. The concentration of plasma catecholamines was determined by radioenzymatic assay. According to the exposure of graded hypoxia, not only did arterial and mixed venous oxygen tension decreased markedly at 10% and 5% oxygen, but also arterial and mixed venous oxygen saturation decreased significantly. An increased trend of the oxygen extraction ratio was seen during graded hypoxia. Cardiac output, mean arterial pressure and systemic vascular resistance were unchanged or increased slightly. Pulmonary arterial pressure(PAP) and pulmonary vascular resistance(PVR) were increased by 55%, 76% in 10% oxygen and by 82%, 95% in 5% oxygen, respectively(p<0.01). The concentrations of plasma norepinephrine, epinephrine and dopamine increased by 75%, 29%, 24% in 15% oxygen and by 382%, 350%, 49% in 5% oxygen. These data suggest that the sympathetic nervous system was activated to maintain homeostasis by modifying blood flow distribution to improve oxygen delivery to tissues by hypoxia, but hemodynamic changes might be blunted by high concentration of nitrous oxide except PAP and PVR. It would be suggested that hemodynamic changes might not be sensitive index during hypoxia induced by high concentration of nitrous oxide exposure.

  • PDF

Effect of Dietary Lipids and Stress on Neurotransmitters in Rats (식이지방과 스트레스가 신경전달물질의 수준에 미치는 영향)

  • 한효나
    • Journal of Nutrition and Health
    • /
    • v.29 no.5
    • /
    • pp.472-479
    • /
    • 1996
  • To investigate the effect of dietary lipids and stress on brain catecholamine and serotonin concentration, sixty three weanling male Sprague-Dawley rats(mean body weight$\pm$SD : 171$\pm$3g) were fed a diet containing fish oil, soybean oil or beef tallow and than, each was exposed to three different types of stress, isolated, grouped or cold, respectively. Cold stress seemed to be most severe and living together in a large cage with some playing equipments is more stressful than living alone in a classical small cage evidenced by plasma corticosterone level. Average food intake and body weight gain were not significantly different among exprimental groups. In adrenal catecholamines, norepinephrine was significantly affected by diet and stress and dopamine was by stress. Norepinephrine concentration of the fish oil group was lowest among diet groups. Adrenal epinephrine, however, was not. It was also shown than the cold stress significantly increased the brain norepinephrine concentration. The cold stress significantly induced higher content of brain serotonin than the grouped stress. However, the concentratin of 5-hydroxyindoleacetic acid(5-HIAA), the metabolite of serotonin, was not significantly different among groups. Therefore, this results suggest that stress affects sympathetic neuronal activity, and fish oil might lighten the burden of stress.

  • PDF