• Title/Summary/Keyword: donor atom

Search Result 54, Processing Time 0.025 seconds

HQSAR Study on Substituted 1H-Pyrazolo[3,4-b]pyridines Derivatives as FGFR Kinase Antagonists

  • Bhujbal, Swapnil P.;Balasubramanian, Pavithra K.;Keretsu, Seketoulie;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Fibroblast growth factor receptor (FGFR) belongs to the family of receptor tyrosine kinase. They play important roles in cell proliferation, differentiation, development, migration, survival, wound healing, haematopoiesis and tumorigenesis. FGFRs are reported to cause several types of cancers in humans which make it an important drug target. In the current study, HQSAR analysis was performed on a series of recently reported 1H-Pyrazolo [3,4-b]pyridine derivatives as FGFR antagonists. The model was developed with Atom (A) and bond (B) connection (C), chirality (Ch), hydrogen (H) and donor/acceptor (DA) parameters and with different set of atom counts to improve the model. A reasonable HQSAR model ($q^2=0.701$, SDEP=0.654, NOC=5, $r^2=0.926$, SEE=0.325, BHL=71) was generated which showed good predictive ability. The contribution map depicted the atom contribution in inhibitory effect. A contribution map for the most active compound (compound 24) indicated that hydrogen and nitrogen atoms in the side chains of ring B as well as hydrogen atoms in the side chain of ring C and the nitrogen atom in the ring D contributed positively to the activity in inhibitory effect whereas, the lowest active compound (compound 04) showed negative contribution to inhibitory effect. Thus results of our study can provide insights in the designing potent and selective FGFR kinase inhibitors.

A Substrate Serves as a Hydrogen Atom Donor in the Enzyme-Initiated Catalytic Mechanism of Dual Positional Specific Maize Lipoxygenase-1

  • Huon, Thavrak;Jang, Sung-Kuk;Cho, Kyoung-Won;Rakwal, Randeep;Woo, Je-Chang;Kim, Il-Chul;Chi, Seung-Wook;Han, Ok-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.917-923
    • /
    • 2009
  • The maize lipoxgyenase-1 is a non-traditional dual positional specific enzyme and the reaction proceeds via enzyme-initiated catalysis. Bioinformatic analysis indicated that the maize lipoxygenase-1 is structurally more similar to soybean LOX1 than pea LOXN2 in that it has an additional external loop (residues 318-351) in the carboxy-terminal catalytic domain. We analyzed the dependence of product distribution on concentration of linoleic acid and monitored the formation of hydroperoxyoctadecadienoic acid as a function of enzyme concentration. Product distribution was strongly influenced by substrate concentration, such that kinetically-controlled regioisomers were enriched and thermodynamically-controlled regioisomers were depleted at high substrate concentration. Kinetic studies indicated that the formation of hydroperoxyoctadecadienoic acid saturated rapidly in an enzyme concentration-dependent manner, which implied that reactivation by reoxidation of inactive Fe(II) failed to occur. Our results support the previously proposed enzyme-initiated catalytic mechanism of the maize lipoxgyenase-1 and reveals that a substrate molecule serves as a hydrogen atom donor in its enzyme-initiated catalysis.

Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine

  • Yoon, Doo-Cheon;Lee, Uk;Oh, Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.796-800
    • /
    • 2004
  • The structure of [Cu(tpen)]$(ClO_4)_2$ (tpen = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethanediamine) has been identified by X-ray crystallography. The copper(II) ion is surrounded by two amine N atoms and three pyridine N atoms of the ligand, making a distorted trigonal-bipyramid. Among the six potential N donor atoms (two amine N and four pyridine N atoms), only one pyridine N atom remains uncoordinated. We examined structural changes on addition of $Cl^-$ to $[Cu(tpen)]^{2+}$(1). The addition of $Cl^-$ in methanol resulted in the formation of a novel dinuclear copper(II) complex $[Cu_2Cl_2(tpen)](ClO_4)_2{\cdot}H_2O$. The structure of the dinuclear complex was verified by X-ray crystallography. Each copper(II) ion in the dinuclear complex showed a distorted square planar geometry with two pyridine N atoms, one amine N atom and one $Cl^-$ ion.

Ab Initio Study of Mechanism of Forming Spiro-Heterocyclic Ring Compound Involving Si and Ge from Dichlorosilylene Germylidene (Cl2Si-Ge:) and Acetone

  • Liu, Dongting;Ji, Hua;Lu, Xiuhui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4079-4083
    • /
    • 2012
  • The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene ($Cl_2Si=Ge:$) and acetone has been investigated with B3LYP/6-$31G^*$ and B3LYP/6-$31G^{**}$ method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the Si-heterocyclic four-membered ring germylene and the ${\pi}$ orbital of acetone forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the Si-heterocyclic four-membered ring germylene further combines with acetone to form an intermediate. Because the Ge atom in the intermediate hybridizes to an $sp^3$ hybrid orbital after the transition state, then, the intermediate isomerizes to spiro-heterocyclic ring compound involving Si and Ge (P4) via a transition state.

Synthesis and Characterization of a Novel Organotin Complex: Di(n-butyl) chloro[5-(p-dimethylaminobenzylidene)rhodanine]tin(IV) Based on a Competing N, O, and S Donor Ligand (새로운 유기주석 착물의 합성과 특성: 경쟁적인 N, O 및 S 주개 리간드에 기초한 Di(n-butyl)chloro[5-( p-dimethylaminobenzylidene)rhodanine]tin(IV))

  • Tarassoli, Abbas;Sedaghat, Tahereh;Mousavi, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.590-593
    • /
    • 2011
  • A novel organotin(IV) complex has been prepared from $Bu_2SnCl_2$ and the N, O and S donor ligand, 5-(p-dimethylaminobenzylidene) rodanine (HL). The ligand is deprotonated in the presence of a base and the complex with the general formula $SnBuCl_2L$ is formed. This complex was fully characterized by IR, $^1H$ NMR and $^{119}Sn$ NMR and elemental analysis. Spectroscopic data indicate the ligand is coordinated through the oxygen atom to the tin and the coordination number of four is supported by $^{119}Sn$ NMR data in solution.

Theoretical Study of the Interaction of N2O with Pd(110)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2369-2376
    • /
    • 2007
  • N2O has been found from experimental and theoretical considerations to bind on-top to the Pd(110) surface in a tilted end-on fashion via its terminal N atom. We use a frontier orbital description of the bonding interactions in the Pd-N2O system to obtain molecular insight into the catalytic mechanism of the activation of N2O by the Pd(110) surface giving rise to the formation of N2 and O on the surface. For the tilted end-on N2O binding mode, the LUMO 3π of N2O has good overlap with the Pd dσ and dπ orbitals which can serve as the electron donors. The donor-acceptor orbital overlap is favorable for electron transfer from Pd to N2O and is expected to dominate the surface reaction pathway of N2O decomposition.

Synthesis of Novel 2'-Fluoro-5'-deoxyphosphonic Acids and Bis(SATE) Adenine Analogue as Potent Antiviral Agents

  • Shen, Guang Huan;Hong, Joon Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3621-3628
    • /
    • 2013
  • Novel 5'-deoxythreosyl purine phosphonic acid analogues containing a 2'-electropositive moiety such as fluorine atom, were designed and synthesized from commercially available 1,3-dihydroxy acetone. Condensation successfully proceeded from a glycosyl donor 6 under Vorbr$\ddot{u}$ggen conditions and cross-metathesis gave the desired phosphonate analogues 7a, 7b, 17a and 17b. The synthesized nucleoside phosphonic acid analogues 13, 16, 23, 26, 28 were subjected to antiviral screening against HIV-1. The bis(SATE) adenine analogue 28 exhibited significant in vitro activities against HIV-1.

Comparison of Photoaddition Reactions of Aromatic Carbonyl Compounds with Silyl Thioketene Acetal vs. Silyl Ketene Acetal

  • Lee, In Ok;Yoon, Ung Chan;Cho, Dae Won
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.76-78
    • /
    • 2013
  • Photoaddition reactions of aromatic carbonyl compounds with silyl thioketene acetals have been explored. The results of this study show that the acetonphenone react with dimethyl substituted silyl thioketene acetal competitively via either single electron transfer (SET)-desilylation or [2+2]-cycloaddition pathways to produce b-hydroxyester and oxetanes. In contrast, photochemical reactions of the benzaldehyde with dimethyl substituted silyl thioketene acetal mainly lead to the formation of oxetanes arising by [2+2] cycloaddition. A comparison of the results with those of silyl ketene acetal revealed that replacement of sulfur atom in ${\alpha}$-silyl donor substrate bring about dramatic changes in chemoselectivities as well as excited state reaction mechanism.

Electrochemical Properties of Molydenum (V) Complexes with Multidentate Ligands Containing Nitrogen or / and Oxygen Donor Atom (질소, 산소 주게원자 리간드를 가진 몰리브덴 (V) 착물의 전기화학적인 성질)

  • Sang Oh OH;Soo Gyun ROH
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.484-495
    • /
    • 1989
  • Reactions of $(Et_4N)_2[MoOCl_5]$ with multidentate ligands containing nitrogen or/and oxygen donor atom (EDTA, DTPA, IDA, CyDTA, OX) produce a series of binuclear molybdate (V) complexes. The prepared Mo (V) complexes has been identified by Elemental Analysis, Infrared Spectra, Proton Magnetic Resonance Spectra, and Electronic Spectra. The electrochemical reduction mechanism has been studied by Cyclic voltammetry, Controlled Potential Coulometry, and Spectrophotometry in pH 3.571-10.375 acetate, borate, phosphate/sodium hydroxide, phosphate, ammonium/ammonia buffers. The cyclic voltammogram of the Mo-EDTA, DTPA, IDA, CyDTA complexes at pH < ca. 6.00 have shown two reduction waves. The first reduction wave shows two electron process and the second reduction wave shows two electron process. The cyclic voltammogram of the Mo-EDTA, DTPA, IDA, CyDTA complexes at pH < ca. 8.00 has shown one reduction wave. This reduction wave show four electron process. The cyclic voltammogram of the Mo-OX complex at pH < ca. 7.2 has shown one reduction wave. This reduction wave show four electron process.

  • PDF

The Crystal and Molecular Structure of Salicylaldehyde-4-piperidinothiosemicarbazone (Salicylaldehyde-4-piperidinothiosemicarbazone의 결정 및 분자구조)

  • Young-Ja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.3-14
    • /
    • 1976
  • The crystal structure of alicylaldehyde-4-piperidinothiosemicarbazone, $C_{13}H_{l7}N_3OS$, has been determined by single crystal X-ray analysis. The crystals are orthorhombic, space group $P2_12_12_1$, with unit cell dimensions a = 6.52(2), b = 13.42(4), c = 14.92(4)${\AA}$. There are four formular units in a unit cell. The structure was solved by the heavy atom method and refined by isotropic block diagonal least-squares methods to a final R value of 0.10 for 1019 observed reflections. The oxygen atom of the hydroxyl group is involved in two hydrogen bonds, one as donor in the intramolecular O-H${\cdots}$N hydrogen bond and the other as acceptor in the intermolecular N-H${\cdots}$O hydrogen bond, the distances of the hydrogen bonds 2.56 and 3.00${\AA}$ respectively.The molecules are joined into infinite columns by the N-H${\cdots}o$O hydrogen bonds which form spirals along the two fold screw axis parallel to the a axis. The molecular columns are held together by van der Waals forces.

  • PDF