• Title/Summary/Keyword: dominant openings

Search Result 13, Processing Time 0.023 seconds

Internal pressure in a low-rise building with existing envelope openings and sudden breaching

  • Tecle, Amanuel S.;Bitsuamlak, Girma T.;Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.25-46
    • /
    • 2013
  • This paper presents a boundary-layer wind tunnel (BLWT) study on the effect of variable dominant openings on steady and transient responses of wind-induced internal pressure in a low-rise building. The paper presents a parametric study focusing on differences and similarities between transient and steady-state responses, the effects of size and locations of dominant openings and vent openings, and the effects of wind angle of attack. In addition, the necessity of internal volume correction during sudden breaching, i.e., a transient response experiment was investigated. A comparison of the BLWT data with ASCE 7-2010, as well as with limited large-scale data obtained at a 'Wall of Wind' facility, is presented.

Effect of Ambient Air Temperature on the Pattern of Clothing Ventilation through Openings (환경 온도가 개구부를 통한 의복의 환기 양상에 미치는 영향)

  • 추미선
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.793-801
    • /
    • 2002
  • The effects of ambient air temperature on the clothing ventilation were investigated numerically by a finite difference method. Numerical analysis using a 2-dimensional model comprising the air space between the skin and the clothing was conducted under the assumption that the clothing ventilation occurred only through the openings not through the fabric. The larger the temperature difference between the skin and the surroundings, the more apparent the thermal boundary layer As the ambient air temperature decreased, the air flow and the rate of the return of oxygen concentration to the atmosphere level in the clothing increased. Convection was dominant under low ambient air temperature, whereas conduction was dominant under high ambient air temperature. The ventilation rate was faster in the clothing microenvironment of the body part than that of the arm part.

  • PDF

Scaling methods for wind tunnel modelling of building internal pressures induced through openings

  • Sharma, Rajnish N.;Mason, Simon;Driver, Philip
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.363-374
    • /
    • 2010
  • Appropriate scaling methods for wind tunnel modelling of building internal pressures induced through a dominant opening were investigated. In particular, model cavity volume distortion and geometric scaling of the opening details were studied. It was found that while model volume distortion may be used to scale down buildings for wind tunnel studies on internal pressure, the implementation of the added volume must be done with care so as not to create two cavity resonance systems. Incorrect scaling of opening details was also found to generate incorrect internal pressure characteristics. Furthermore, the effective air slug or jet was found to be longer when the opening was near a floor or sidewall as evidenced by somewhat lower Helmholtz frequencies. It is also shown that tangential flow excitation of Helmholtz resonance for off-centre openings in normal flow is also possible.

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.

Shear Strength Reduction Ratio of Reinforced Concrete Shear Walls with Openings (개구부를 갖는 철근콘크리트 전단벽의 전단강도 저감률)

  • Bae, Baek-Il;Choi, Yun-Cheul;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.451-460
    • /
    • 2010
  • There are many types of remodeling, however, engineers and architectures preferred to merge two or more separate units to one very spacious unit. Performing this type of remodeling, in the case of wall dominant apartments, requires partial removal of structural wall causing a concern of structural integrity. However, there are insufficient studies about partial removal, that is, openings. Presently, ACI standard have no clear way to evaluate the effect of opening on the structural wall. AIJ has the provision about strength reduction factor '$\gamma$'. However, this reduction factor cannot exactly evaluate the reduction effect of openings because this factor '$\gamma$' was determined through the elastic analysis. Therefore, in this study, 2 structural wall specimens were tested and many test results from previous studies were collected. Using these data, this study performed statistical analysis about strength of structural wall which have the opening in wall panel. And this study performed parametric study verifying shear strength reducing effect by opening area. In the results of statistical study, previous reduction factor show very conservative results because this equation did not consider other factors, reinforcement ratio and aspect ratio of openings, which was affect the shear strength of shear walls. Therefore we performed parametric study based on the test data and suggest new equation for shear strength reduction factor '$\gamma$'.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

A Theoretical and Numerical Study on Channel Flow in Rock Joints and Fracture Networks (암석절리와 균열망내에서의 채널흐름에 관한 이론적 수치해석적 연구)

  • 송명규;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 1994
  • The study on the flow characteristics and analysis of groundwater in discontinuous rock mass is very important, since the water inflow into the underground opening during excavation induces serious stability and environmental problems. To investigate the flow through single rock joint, the effect of various aperture distribution on the groundwater flow has been analyzed. Observed through the analysis is the "channel flow", the phenomenon that the flow is dominant along the path of large aperture for given joint. The equivalent hydraulic conductivity is estimated and verified through the application of the joint network analysis for 100 joint maps generated statistically. Both the analytic aproach based on isotropic continuum premise and the joint network analysis are tested and compared analyzing the gorundwater inflow for underground openings of different sizes and varying joint density. The joint network analysis is considered better to reflect the geometric properties of joint distribution in analyzing the groundwater flow.ater flow.

  • PDF

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

Seismic Performance of Shear Dominant Hybrid Steel Link Beam with Circular Web Opening (원형 개구부가 있는 전단지배 하이브리드 강재 연결보의 내진성능)

  • Lim, Woo-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Cyclic loading tests for shear dominant hybrid steel link beams with circular web openings were performed to evaluate the seismic performance. Four half-scaled specimens with bolted connections were tested. The test parameter is a diameter of the web opening, i.e., shear strength ratio ($V_{pw}/V_p$) of the link beam and presence of top-seat angles. Using test results, adequate design shear strength of link beam was finally suggested. Test results showed that when the shear capacity is less than half of the plastic shear strength, seismic performance was improved due to mitigation of pinching under reversed cyclic inelastic deformations.

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moradizadeh, Masih
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 2018
  • Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.