• Title/Summary/Keyword: dominant frequencies

Search Result 256, Processing Time 0.029 seconds

A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Support Locations (시뮬레이션에 의한 유체 유동 굴곡파이프의 지지점 변화에 따른 고유 진동수 고찰)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.115-123
    • /
    • 1998
  • A simulation is performed to investigate the effect of the pipe supports on the change of the natural frequencies of curved pipe systems containing fluid flow, for different elbow angles and geometry of the pipe systems. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the corresponding eigenvalue problem. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies. Without any support, the change of the fundamental natural frequency due to the geometric change is smaller than the change of the second or higher natural frequencies. The more curve parts exist in the pipe system, the less change of lower frequency range, compared with the change of higher frequency range, is observed. Spring supports can be used to reduce the fundamental natural frequency, without change of the second or higher natural frequencies. To avoid resonance, which is critically dangerous from the view point of structural dynamics, the mechanical properties such as stiffness or the location of pipe supports are need to be changed to isolate the natural frequencies from the frequency range of dominant vibration modes.

  • PDF

Elastic Wave Properties of STS316L with Different Subzero Temperature and Time (서브제로 온도 및 시간이 다른 STS316L의 탄성파 특성)

  • Lee, Gum-Hwa;Gu, Kyoung-Hee;Tak, Young-Joon;Kwon, Yung-Kug;Shin, Ki-Hang;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.783-789
    • /
    • 2022
  • In this study, STS316L rolled at five rolling degrees were treated with two types of subzero temperatures for 10, 30, and 60 minutes, respectively, and the dominant frequencies of elastic waves was investigated. The dominant frequency was higher as the subzero temperature was lower and the subzero treatment time was longer at each rolling degree. On the other hand, the dominant frequency was higher as the elongation decreased. In the time-frequency analysis for subzero temperature and time of the specimen with a rolling degree of 33%, the dominant frequency was higher at a subzero temperature of -196℃ than -50℃ regardless of subzero treatment time.

Analysis of the Characteristics of Dynamic Frequency Responses in Railway Plate Girder Bridges (철도 판형교의 동적응답 주파수 특성에 대한 분석)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1035-1040
    • /
    • 2002
  • Railway plate girder bridges have characteristics that are not show dominant frequency in dynamic response frequencies like obtained vertical acceleration on the bridge during the train passing because the train loading relatively bigger than the bridge self-weight. This paper experimentally confirmed in FFT result has various frequencies due to inherent characteristic of railway train loading. To establish classification of dynamic frequency range in railway bridge acceleration during the train passing, vibration frequencies result from experimental test are analyzed concerning actuation vibration factors. Factors are train velocity, train type, mass ratio of vehicle/bridge, stiffness of bridge, bridge/track and vehicle/track. From the result, it is proposed that the frequencty classfication table with corresponding factors. Using the proposed table to develop rehabilitation technique of the plate girder bridge, to expect vibration reduction and comfort enhancement of the railway plate girder bridge.

  • PDF

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.685-688
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

Study of ground vibration induced by high-speed trains moving on multi-span bridges

  • Ju, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • This paper investigates the ground vibration induced by high-speed trains moving on multi-span continuous bridges. The dynamic impact factor of multi-span continuous bridges under trainloads was first determined in the parametric study, which shows that the dynamic impact factor will be large when the first bridge vertical natural frequency is equal to the trainload dominant frequencies, nV/D, where n is a positive integer, V is the train speed, and D is the train carriage interval. In addition, more continuous spans will produce smaller dynamic impact factors at this resonance condition. Based on the results of three-dimensional finite element analyses using the soil-structure interaction for realistic high-speed railway bridges, we suggest that the bridge span be set at 1.4 to 1.5 times the carriage interval for simply supported bridges. If not, the use of four or more-than-four-span continuous bridges is suggested to reduce the train-induced vibration. This study also indicates that the vibration in the train is major generated from the rail irregularities and that from the bridge deformation is not dominant.

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Kim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.365-368
    • /
    • 1998
  • In this research project two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

The transition of dominant noise source for different CMOS process with Cgd consideration (Cgd 성분을 포함한 공정별 주요 잡음원 천이 과정 연구)

  • Koo, Minsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.682-685
    • /
    • 2020
  • In this paper, we analyze the dominant noise source of conventional inductively degenerated common-source (CS) cascode low noise amplifier (LNA) when width and gate length of stacked transistors vary. Analytical MOSFET and its noise model are used to estimate the contributions of noise sources. All parameters are based on measured data of 60nm, 90nm and 130nm CMOS devices. Based on the noise analysis for different frequencies and device parameters including process nodes, the dominant noise source can be analyzed to optimize noise figure on the configuration. We verified analytically that the intuctively degenerated CS topology can not sustain its benefits in noise above a certain operation frequency of LNA over different process nodes.

An XY scanner with minimized coupling motions for the high speed AFM (상호 간섭이 최소화된 고속 원자현미경용 XY 스캐너 제작)

  • Park J.;Moon W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.653-656
    • /
    • 2005
  • This paper introduces design, fabrication and experiment process of a novel scanner for the high speed AFM(Atomic Force Microscope). A proper design modification is proposed through analyses on the dynamic characteristics of the existing linear motion stages using a dynamic analysis program, Recurdyn. Since the scanning speed of each direction is allowed to be different, the linear motion stage for the high-speed scanner of AFM can be so designed to have different resonance frequencies for the modes with one dominant displacement in the desired directions. One way to achieve this objective is to use one-direction flexure mechanism for each direction and to mount one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separates the frequencies of the two vibration modes with one dominant displacement in each desired direction, hence, the coupling between the motions in the two directions. In addition, a pair of actuators is used for each axis to decrease the cross talks in the two motions and gives a force large enough to actuate the slow motion stage, which carries the fast motion stage. After these design modifications, a novel scanner with scanning speed higher than 10 Hz can be achieved to realize undistorted images in the high speed AFM.

  • PDF

New methodology to prevent blasting damages for shallow tunnel

  • Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1227-1236
    • /
    • 2018
  • From all of the environmental problems, blast-induced vibrations often cause concern to surrounding residents. It is often claimed that damage to building superstructures is due to blasting, and sometimes the building owner files a lawsuit against the company that perform blasting operations. The blast-vibration problem has been thoroughly investigated in the past and continues to be the subject of ongoing research. In this study, a tunnel construction has been performed by a construction company, according to their contract they must have used drilling & blasting method for excavation in tunnel inlet and outlet portal. The population is very condensed with almost tunnel below in the vicinity houses of one or two floors, typically built with stone masonry and concrete. This situation forces the company to take extreme precautions when they are designing blasts so that the blast effects, which are mainly vibration and aerial waves, do not disturb their surrounding neighbors. For this purpose, the vibration measurement and analysis have been carried out and a new methodology in minimizing the blast induced ground vibrations at the target location, was also applied. Peak particle velocity and dominant frequencies were taken into consideration in analyzing the blast-induced ground vibration. The methodology aims to employ the most suitable time delays among blast-hole groupings to render destructive interference of surface waves at the target location.