• Title/Summary/Keyword: dominant failure mode

Search Result 54, Processing Time 0.029 seconds

A Study on Malfunction Mode of CMOS IC Under Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파로 인한 CMOS IC에서의 오동작 특성 연구)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.559-564
    • /
    • 2016
  • This study examined the malfunction mode of the HCMOS IC under narrow-band high-power electromagnetic wave. Magnetron is used to a narrow-band electromagnetic source. MFR (malfunction failure rate) was measured to investigate the HCMOS IC. In addition, we measured the resistance between specific pins of ICs, which are exposed and not exposed to the electromagnetic wave, respectively. As a test result of measurement, malfunction mode is shown in three steps. Flicker mode causing a flicker in LED connected to output pin of IC is dominant in more than 7.96 kV/m electric field. Self-reset mode causing a voltage drop to the input and output of IC during electromagnetic wave radiation is dominant in more than 9.1 kV/m electric field. Power-reset mode making a IC remained malfunction after electromagnetic radiation is dominant in more than 20.89 kV/m. As a measurement result of pin-to-pin resistance of IC, the differences between IC exposed to electromagnetic wave and normal IC were minor. However, the five in two hundred IC show a relatively low resistance. This is considered to be the result of the breakdown of pn junction when latch-up in CMOS occurred. Based on the results, the susceptibility of HCMOS IC can be applied to a basic database to IC protection and impact analysis of narrow-band high-power electromagnetic waves.

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

The System Reliability Analysis of Web Frame by Plastic Strength Analysis (소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석)

  • Y.S. Yang;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 1991
  • Plastic strength analysis using plastic failure mode as a limit state is adopted instead of a conventional elastic structural analysis to predict the ultimate strength of Web frame idealized by a plane frame. Linear programming arid Compact procedure are developed for determining the collapse load factor. It is found that the final results are good agreement with the results of Elasto-plastic analysis. Besides, the redundant structures like Web frame is known to have multiple failure modes. Web frame may collapse under any of the possible failure modes. Thus, the identification of these possible failure modes is necessary and very important in the reliability analysis of Web frame. In order to deal with multiple failure modes, automatic generation method of all failure modes and basic failure modes is used for selecting the dominant failure modes. The probability of failure pastic collapse of Web frame is calculated using these dominant failure modes. The safety of Web frame is asscssed and compared by performing the deterministic and probabilistic analysis.

  • PDF

Lifetime Estimation of an Automotive Halogen Lamp (자동차용 Halogen Lamp 의 수명 예측)

  • Kim, Chung-Sik;Shin, Seung-Jung;Kwack, Kae-Da
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1259-1264
    • /
    • 2008
  • This paper presents an accelerated life test for burn out of tungsten filament of automotive halogen lamp. There are many failure modes and failure factors that associated with tungsten filament. But in this explain the dominant failure mode of tungsten filament is the bumout of the filament failure. At first, over voltage, high temperature, inrush current and vibration are selected as stress factors by using of two stage Quality Function Deploymeng(QFD). And we planed accelerated life test that has one factor(voltage) and three levels. By experiment it has absorbed that over voltage has an effect on the life of halogen lamp. Using ALTA programs, we estimated the common shpae parament of Weibull distribution, life-stress relationship and $B_{100p}$ life.

  • PDF

Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams

  • Cucchiara, Calogero;Fossetti, Marinella;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.551-570
    • /
    • 2012
  • An experimental program was carried out to investigate the influence of fibre reinforcement on the mechanical behaviour of high strength reinforced concrete beams. Eighteen beams, loaded in four-point bending tests, were examined by applying monotonically increasing controlled displacements and recording the response in terms of load-deflection curves up to failure. The major test variables were the volume fraction of steel fibres and the transverse steel amount for two different values of shear span. The contribution of the stirrups to the shear strength was derived from the deformations of their vertical legs, measured by means of strain gauges. The structural response of the tested beams was analyzed to evaluate strength, stiffness, energy absorption capacity and failure mode. The experimental results and observed behaviour are in good agreement with those obtained by other authors, confirming that an adequate amount of steel fibres in the concrete can be an alternative solution for minimizing the density of transverse reinforcement. However, the paper shows that the use of different theoretical or semi-empirical models, available in literature, leads to different predictions of the ultimate load in the case of dominant shear failure mode.

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Lifetime Estimation for BLU LED (BLU(Back light Unit) 용 LED 의 수명예측)

  • Kim, Min-Pyo;Kim, Jae-Jung;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1271-1276
    • /
    • 2008
  • This study has explained about LED for BLU which is widely used in the kinds of display devices or lighting. It was shown that the open due to delamination were the dominant LED for BLU failure mode and mechanisms from failure analysis of LED samples. Then, we have defined failure as yellowing and 100% reduction of light output intensity of LED for BLU and acceleration factors as temperature and current in Accelerated Life Test(ALT). Finally, we have estimated the Weibull distribution, life-stress relationship, and accelerating factor is used by ALTA Software.

  • PDF

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.