• Title/Summary/Keyword: domestic water supply benefit

Search Result 7, Processing Time 0.017 seconds

Estimation of Domestic Water Supply Benefit Using Demand Function Approach (수요함수 접근법을 이용한 생활용수 공급편익 산정)

  • Yeo, Kyu Dong;Yi, Choong Sung;Kim, Gil Ho;Lee, Sang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.233-242
    • /
    • 2012
  • In the past, the domestic water supply benefit of dam has been estimated by replacement dam cost approach. But it is logically inappropriate that we use the second priority dam as a replaced facility. Therefore, this study aims to suggest the estimation method of the domestic water supply benefit by using demand function, which is deduced from Willingness-To-Pay (WTP) of consumers. For this purpose, a survey concerning the marginal WTP is carried out according to the change of water use amount used, targeted 1,000 households in metropolitan area. And by using the marginal WPT, we estimated the demand function of a family. Finally, the monthly benefit equation is derived. The approach is demonstrated and discussed for an example, the Song-Li-Won dam project which is now renamed Young-Ju dam. From the example study, the total benefit for the durable years (50 years), was about 90 billion won. The method proposed herein is expected to be practical and useful in the economic analysis of the domestic water supply project including dam construction, as well as in further studies.

Assessment of domestic water supply potential of agricultural reservoirs in rural area considering economic index (경제성 지표를 활용한 농업용저수지의 생활용수 공급가능성 평가)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Chai, Jong-Hun;Yoo, Seung-Hwan;Choi, Dong-Ho;Yoon, Suk-Gun;Lee, Chang-Hee;Jung, Kyung-Hun;Shin, Gil-Chai
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.1
    • /
    • pp.85-96
    • /
    • 2017
  • Existing agricultural reservoirs are considered as alternative source for the water welfare of rural area. In this study, domestic water supply potential of 476 reservoirs, which has storage capacity more than one million cubic meter, out of 3,377 agricultural reservoirs managed by Korean Rural Community Corporation (KRC) were investigated. Among them water quality of 136 reservoirs met the criteria of domestic water source which show less than COD 3 ppm. Available amount for domestic water of reservoirs, which meet the water quality, for ten year return period of drought was analyzed with reservoir water balance model. The results showed that 116 reservoirs has potential for supplementary domestic water supply while satisfying irrigation water supply. Finally, economic analysis using Net Present Value (NPV), Benefit-Cost (B/C) ratio, Internal Rate of Return (IRR), and Profitability Index (PI) methods was also conducted. The analysis showed that 19 reservoirs satisfied economic feasibility when water is provided from reservoir outlet but only 9 reservoirs meet the economic feasibility if water delivered from a reservoir to treatment plant by newly built conveyance canal. In order to supply the domestic water through the agricultural reservoirs managed by KRC, it is necessary to flexibly interpret and operate the 'Rearrangement of Agricultural and Fishing village Act'. Also, it is reasonable to participate in the water service business when there is a supply request from other Ministries. In addition, the KRC requires further effort to change the crop system for saving water and improve efficiency of irrigation systems.

Water Quality Improvement Characteristics in Fallow Paddy by the Shallow Pool and Shallows (휴경지의 웅덩이와 여울에 의한 수질정화특성)

  • Kim, Sun-Joo;Kim, Hyung-Jung;Kim, Phil-Shik;Jee, Yong-Geun;Yang, Yong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.35-45
    • /
    • 2006
  • Fallow paddy areas have been increased due to the import of cheap agricultural product, and the unbalance between farming cost and rice price since 1990. In domestic, rice production control that decrease paddy field area has been introduced for the control of rice demand and supply and stabilization of rice price since 2003. Because of the desire of paddy field's owner to create benefit by using paddy for other object, fallow paddy would be continuously increased. In the other aspect, many people in the world is suffering from hunger because of the shortage of food. In case of Korea, continuous drought and flood damages will be potential concern of stable food supply. From this viewpoint, the increasing fallow paddy area needs to be protected from the devastation by weed breeding for the re-cultivation. In this study, fallow paddy managed with the shallow pools and shallows was selected fur monitoring and analyzing of water quality and plant body change. As the results, the managed fallow paddy found to be effective in the purification of water quality and the control of plant growth.

Estimation of Industrial Water Supply Benefits Using Production Function Approach (생산함수 접근법에 의한 공업용수 공급편익 산정 방안)

  • Kim, Gil Ho;Yi, Choong Sung;Lee, Sang Won;Shim, Myung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.173-179
    • /
    • 2009
  • Industrial water supplied by water resource project is essential input materials along with labor, capital and land for companies. It is very important to stably secure these input materials in order for the industry to generate additional values. If the supply of industrial water is stopped, it is known damage for the industry is greater than domestic water or agriculture water based on same amount of supply. Like this, the actual value of industrial water has been highly acknowledged from the intuitive perspective, but study on the value and benefits of industrial water has been rarely conducted. Therefore, this study verified the value of industrial water supplied from water resource project, and used marginal production value as a measure to estimate the benefits of industrial water in the analysis of economic efficiency. As a result of empirical analysis using Cobb-Douglas production function and Translog production function, industries' average marginal production value was $5,427KRW/m^3$ and $5,583KRW/m^3$ respectively. The marginal production value for eleven industries were estimated by using same method. The marginal production value by industries presented by this study will be used as important data to calculate benefits of industrial water in the future. Moreover, the result of this study will provide reasonable criteria for decision making on the allocation of water in emergency situation, and problem of resource supply from water resource project.

Optimized Allocation of Water for the Multi-Purpose Use in Agricultural Reservoirs (농업용 저수지의 다목적 이용을 위한 용수의 적정배분)

  • 신일선;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.125-137
    • /
    • 1987
  • The purpose of this paper is to examine some difficulties in water management of agricultural reservoirs in Korea, for there are approximately more than 15,000 reservoirs which are now being utilized for the purpose of irrigation, along with the much amount of expenses and labors to be invested against droughts and floods periodically occurred. Recently, the effective use of water resources in the agricultural reservoirs with a single purpose, is becomming multiple according to the alterable environment of water use. Therefore, the task to allocate agricultural water rationally and economically must be solved for the multiple use of agricultural reservoirs. On the basis of the above statement, this study aims at suggesting the rational method of water management by introducing an optimal technique to allocate the water in an existing agricultural reservoir rationally, for the sake of maximizing the economic effect. To achieve this objective, a reservoir, called "0-Bongje" as a sample of the case study, is selected for an agricultural water development proiect of medium scale. As a model for the optimum allocation of water in the multi-purpose use of reservoirs a linear programming model is developed and analyzed. As a result, findings of the study are as follows : First, a linear programing model is developed for the optimum allocation of water in the multi-purpose use of agricultural reservoirs. By adopting the model in the case of reservoir called "O-Bongje," the optimum solution for such various objects as irrigation area, the amount of domestic water supply, the size of power generation, and the size of reservoir storage, etc., can be obtained. Second, by comparing the net benefits in each object under the changing condition of inflow into the reservoir, the factors which can most affect the yearly total net benefit can be drawn, and they are in the order of the amount of domestic water supply, irrigation area, and power generation. Third, the sensitivity analysis for the decision variable of irrigation which may have a first priority among the objects indicate that the effective method of water management can be rapidly suggested in accordance with a condition under the decreasing area of irrigation. Fourth, in the case of decision making on the water allocation policy in an existing multi-purpose reservoir, the rapid comparison of numerous alternatives can be possible by adopting the linear programming model. Besides, as the resources can be analyed in connection with various activities, it can be concluded that the linear programing model developed in this study is more quantitative than the traditional methods of analysis. Fifth, all the possible constraint equations, in using a linear programming model for adopting a water allocation problem in the agricultural reservoirs, are presented, and the method of analysis is also suggested in this study. Finally, as the linear programming model in this study is found comprehensive, the model can be adopted in any different kind of conditions of agricultural reservoirs for the purpose of analyzing optimum water allocation, if the economic and technical coefficients are known, and the decision variable is changed in accordance with the changing condition of irrigation area.

  • PDF

Optimal Management Scheme for Phosphorus Discharged from Public Sewage Treatment Plant Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 공공 하수종말처리시설의 총인 배출 최적관리)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Jeong, Myungsuk;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • The purpose of the study is to optimally manage sewage treatment plant with analysis of phosphorus contribution and improvement of water quality contributing rate in the effect of inflowing point of effluent and Pal-Dang lake after reducing T-P discharge from large scale public sewage treatment plant at upstream of Pal-Dang lake. Also, this study, for enforcement of T-P in effluent, plans optimal management of effluent T-P through examining propriety of environmental, technological, and economical aspect such as water quality standard of domestic and foreign T-P and related policy. In regarding optimal management of T-P discharged from public sewage treatment plant located in upstream of Pal-Dang lake, the study drew following conclusions. With the optimal management of public sewage treatment plant, it showed that a pollution level became higher in the order of Sumgang E in South-Han river, C in Dalcheon, B1 B2, A in North-Han river, and J in Kyungancheon, and it is required reduction of T-P first. The highest value in analysis of benefit-costs from sewage treatment plant in the selected research area was Kyungan B, and the others are with the order of Jojong A, Bokha A, Kyungan A, and Yanghwa A. With result of this study, all 14 areas are required more enforced phosphorus treatment. The study resulted that the most top priority areas were Hangang F, Sumgang B, and Gyungan A, top priority areas were Bokha A, Dalcheon B, and Cheongmi A, priority areas were Hangang E, Heukcheon A, Gyungan B, and Jojong A, and potential areas were Sumgang A, Yanghwa A, Dalcheon A, and Hangang D. It seems to be appropriate to apply 0.2 mg/L of T-P treatment for water supply source reservation, 0.5 mg/L for the other areas by locally, and 0.2~0.5 mg/L for biological nitrogen phosphorus treatment method and 0.5~1 mg/L for Conventional Activated Sludge by technologically. Also, it may be appropriate to apply 0.2 mg/L for the most top priority area(I), 0.3 mg/L for the top priority area(II), 0.4 mg/L for priority area(III), and 0.5 mg/L for potential area(IV) by the separation of priority area.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.