• Title/Summary/Keyword: domestic academic articles

Search Result 104, Processing Time 0.019 seconds

Present and Future of the Journal of Distribution Science (유통과학연구의 현재와 미래)

  • Kim, Dong-Ho;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.10 no.5
    • /
    • pp.7-17
    • /
    • 2012
  • The recent announcement of the National Research Foundation of Korea (NRF) to cease journal accreditation operations as of the end of the year 2014 can easily influence the future of many research journals in Korea. Although this plan has not yet been formalized or structured, its facilitation would be the major turning point for the current Korean research and scholarly journals and publications. In addition, the NRF's plan to select and fund top 20 or more research journals over the five year period beginning 2015 suggests that the competition will most likely increase among Korean journals. Each journal would need to develop its unique strategy to improve and strengthen its competitiveness to become or maintain its position as a major research journal in Korea. The association of Korean Distribution of Science (KODISA) and its research journal, Journal of Distribution Science (JDS), has been continuously improving its reputation as a reputable journal in the distribution and related fields since its establishment in 1999. Due to demand, JDS has had to undergo several changes in its publication cycle first from semiannual publication to quarterly, then finally to monthly publications in 2012, and has become one of the major social science journals in Korea. Furthermore, with the redesigning of its webpage with English language in July of 2011, KODISA has made the published journals freely accessible and available to both domestic and foreign researchers, scholars, practitioners, and learners. These changes have resulted in the rapid increase in the bounce rate and the number of journal submissions by foreign scholars, with four research articles having been submitted by foreign scholars just in March of 2012 alone. However, although the changes and outcomes have resulted in a reasonable success so far, the achievement may only become a short-term success without continuously developing, improving, and implementing both effective and efficient strategies through critical, thorough, and frequent examinations and evaluations of both KODISA and JDS. As such, the purpose of this research is to carefully examine both KODISA and JDS to identify problematic factors and to develop appropriate strategies to change or modify those problems for further strengthening and improving their reputation and status. The paper examines and analyzes the past, present, and future of KODISA and JDS and their managerial, operational, and systematic procedures and operations. The narrow scope of research and inefficiencies in promoting the association and the journal and the improvement of impact factors are identified as the notable problems that could hinder JDS from being included in SCOPUS or SSCI in the near future. This type of examination and exploration has not been previously conducted, so the major limitation of this paper can be identified as not meticulously elaborating on the problems nor proving detailed recommendations based on the existing researches. This article asserted that solving the problem of the narrow scope of research would lead to facilitation of resolving other inefficient problems. Inclusion of international academic disciplines to the distribution and their related fields would be the viable initiation of expanding the research area, and this strategy could promote the journal as well as improve its impact factors. The narrow scope of research seems to be a good research topic and merit further exploration as an individual research project, because this kind of research could yield the creation of new understandings or theories.

  • PDF

Text Mining-Based Emerging Trend Analysis for the Aviation Industry (항공산업 미래유망분야 선정을 위한 텍스트 마이닝 기반의 트렌드 분석)

  • Kim, Hyun-Jung;Jo, Nam-Ok;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.65-82
    • /
    • 2015
  • Recently, there has been a surge of interest in finding core issues and analyzing emerging trends for the future. This represents efforts to devise national strategies and policies based on the selection of promising areas that can create economic and social added value. The existing studies, including those dedicated to the discovery of future promising fields, have mostly been dependent on qualitative research methods such as literature review and expert judgement. Deriving results from large amounts of information under this approach is both costly and time consuming. Efforts have been made to make up for the weaknesses of the conventional qualitative analysis approach designed to select key promising areas through discovery of future core issues and emerging trend analysis in various areas of academic research. There needs to be a paradigm shift in toward implementing qualitative research methods along with quantitative research methods like text mining in a mutually complementary manner. The change is to ensure objective and practical emerging trend analysis results based on large amounts of data. However, even such studies have had shortcoming related to their dependence on simple keywords for analysis, which makes it difficult to derive meaning from data. Besides, no study has been carried out so far to develop core issues and analyze emerging trends in special domains like the aviation industry. The change used to implement recent studies is being witnessed in various areas such as the steel industry, the information and communications technology industry, the construction industry in architectural engineering and so on. This study focused on retrieving aviation-related core issues and emerging trends from overall research papers pertaining to aviation through text mining, which is one of the big data analysis techniques. In this manner, the promising future areas for the air transport industry are selected based on objective data from aviation-related research papers. In order to compensate for the difficulties in grasping the meaning of single words in emerging trend analysis at keyword levels, this study will adopt topic analysis, which is a technique used to find out general themes latent in text document sets. The analysis will lead to the extraction of topics, which represent keyword sets, thereby discovering core issues and conducting emerging trend analysis. Based on the issues, it identified aviation-related research trends and selected the promising areas for the future. Research on core issue retrieval and emerging trend analysis for the aviation industry based on big data analysis is still in its incipient stages. So, the analysis targets for this study are restricted to data from aviation-related research papers. However, it has significance in that it prepared a quantitative analysis model for continuously monitoring the derived core issues and presenting directions regarding the areas with good prospects for the future. In the future, the scope is slated to expand to cover relevant domestic or international news articles and bidding information as well, thus increasing the reliability of analysis results. On the basis of the topic analysis results, core issues for the aviation industry will be determined. Then, emerging trend analysis for the issues will be implemented by year in order to identify the changes they undergo in time series. Through these procedures, this study aims to prepare a system for developing key promising areas for the future aviation industry as well as for ensuring rapid response. Additionally, the promising areas selected based on the aforementioned results and the analysis of pertinent policy research reports will be compared with the areas in which the actual government investments are made. The results from this comparative analysis are expected to make useful reference materials for future policy development and budget establishment.

A Study on Perception Change in Bicycle users' Outdoor Activity by Particulate Matter: Based on the Social Network Analysis (미세먼지로 인한 자전거 이용객의 야외활동 인식변화에 관한 연구: 사회네트워크분석을 중심으로)

  • Kim, Bomi;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.440-456
    • /
    • 2019
  • The controversy of the risk perception related to particulate matters becomes significant. Therefore, in order to understand the nature of the particulate matters, we gathered articles and comments in on-line community related to bicycling which is affected by exposure of the particulate matters. As a result, firstly, the government - led particulate matter policy was strengthened and segmented every period, butthe risk perception related to particulate matters in the bicycle community has become active and serious. Second, as a result of analyzing the perception change of outdoor activities related to particulate matters, bicycle users in community showed a tendency of outdoor activity depending on the degree of particulate matters ratherthan the weather. In addition, the level of the risk perception related to particulate matters has been moved from fears of serious threat in daily life and health, combined with the disregard of domestic particulate matter levels or mask performance. Ultimately, these risk perception related to particulate matters have led some of the bicycling that were mainly enjoyed outdoors to the indoor space. However, in comparison with outdoor bicycling enjoyed by various factors such as scenery, people, and weather, the monotonous indoor bicycling was converted into another type of indoor exercise such as fitness and yoga. In summary, it was derived from mistrust of excessive information or policy provided by the government or local governments. It is considered that environmental policy should be implemented after discussion of risk communication that can reduce the gap between public anxiety and concern so as to cope with the risk perception related to particulate matters. Therefore,this study should be provided as an academic basis for the effective communication direction when decision makers establish the policy related to particulate matters.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.