• Title/Summary/Keyword: domain size

Search Result 951, Processing Time 0.034 seconds

Effects of Hybrid Lipid Concentration on Equilibrium Domain Size in a Lipid Bilayer Immersed in Water

  • Sornbundit, Kan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1899-1903
    • /
    • 2018
  • The effects of introducing hybrid lipids to a lipid bilayer containing saturated and unsaturated lipids immersed in water were studied. The lipid and water molecules were modeled as coarse-grained particles. All particles were simulated by using the dissipative particle dynamics method. The results showed that the hybrid lipids accumulated at the interface between the saturated and the unsaturated lipid domains. The relation between the hybrid lipid concentration and the equilibrium domain size was obtained. Moreover, the sizes of the simulated lipid domains are consistent with that given by the lipid raft definition.

Frame resizing scheme in H.264/AVC compressed domain (H.264/AVC 압축 도메인에서의 프레임 resizing 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.145-147
    • /
    • 2006
  • Image resizing is to change an image size by upsampling or downsampling of a digital image. Most still images and video frames are given in a compressed domain on digital media. Image resizing of a compressed image can be performed in a spatial domain via decompression or recompression. In general, resizing of a compressed image in a compressed domain is much faster than that in a spatial domain. In this paper, we propose an approach to resize images in the integer discrete cosine transform (DCT) domain, which exploits the multiplication-convolution property of DCT.

  • PDF

A Study on Sensitivity of Heavy Precipitation to Domain Size with a Regional Numerical Weather Prediction Model (지역예측모델 영역 크기에 따른 집중호우 수치모의 민감도 실험)

  • Min, Jae-Sik;Roh, Joon-Woo;Jee, Joon-Bum;Kim, Sangil
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.85-95
    • /
    • 2016
  • In this study, we investigated the variabilities of wind speed of 850 hPa and precipitable water over the East Asia region using the NCEP Final Analysis data from December 2001 to November 2011. A large variance of wind speed was observed in northern and eastern China during the winter period. During summer, the regions of the East China Sea, the South Sea of Japan and the East Sea show large variances in the wind speed caused by an extended North Pacific High and typhoon activities. The large variances in the wind speed in the regions are shown to be correlated with the inter-annual variability of precipitable water over the inland region of windward side of the Korean Peninsula. Based on the investigation, sensitivity tests to the domain size were performed using the WRF model version 3.6 for heavy precipitation events over the Korean Peninsula for 26 and 27 July 2011. Numerical experiments of different domain sizes were set up with 5 km horizontal and 50 levels vertical resolutions for the control and the first experimental run, and 9 km horizontal for the second experimental run. We found that the major rainfalls correspond to shortwave troughs with baroclinic structure over Northeast China and extended North Pacific High. The correlation analysis between the observation and experiments for 1-h precipitation indicated that the second experiment with the largest domain had the best performance with the correlation coefficient of 0.79 due to the synoptic-scale systems such as short-wave troughs and North Pacific High.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Structural Diagnosis in Time Domain on Damage Size (손상크기에 따른 시간영역에서의 구조물 진단)

  • 권대규;임숙정;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.259-262
    • /
    • 2002
  • This paper provides the experimental verification of a non-destructive time domain approach to examine structural damage. Time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure cause changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the use of beam like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters, and hence to detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different location and with damage of different dimensions. It is demonstrated that the method can sense the presence of damage, and characterize the damage to a satisfactory precision.

  • PDF

Multimodal Dialog System Using Hidden Information State Dialog Manager (Hidden Information State 대화 관리자를 이용한 멀티모달 대화시스템)

  • Kim, Kyung-Duk;Lee, Geun-Bae
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.29-32
    • /
    • 2007
  • This paper describes a multimodal dialog system that uses Hidden Information State (HIS) method to manage the human-machine dialog. HIS dialog manager is a variation of classic partially observable Markov decision process (POMDP), which provides one of the stochastic dialog modeling frameworks. Because dialog modeling using conventional POMDP requires very large size of state space, it has been hard to apply POMDP to the real domain of dialog system. In HIS dialog manager, system groups the belief states to reduce the size of state space, so that HIS dialog manager can be used in real world domain of dialog system. We adapted this HIS method to Smart-home domain multimodal dialog system.

  • PDF

The Computer Simulation of Ink Penetration in the Gravure (그라비어에서 잉크 침투의 컴퓨터 시뮬레이션)

  • Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.45-56
    • /
    • 2010
  • The computer simulation is presented of gravure ink transferring behavior and penetration to the paper when an gravure roller is used to transfer a printing ink onto a substrate. The three dimensional unsteady ink motion is simulated by Polyflow package software and experimented by IGT gravure printing test machine. The simulation is performed where the flow domain is bounded above by a stress free surface and bounded below by a moving substrate. Specific predictions are made for particular pattern of cells and substrates. Cell size and ink rheological properties are found to be the principal determination of transferring behavior. Simulation is currently restricted to the flow domain beneath the receding meniscus. Both Newtonian and shear thinning inks are considered.

Domain formation characteristics during thermomagnetic recording for amorphous TbFe and TbFeCo alloy thin films

  • Kim, Soon-Gwang
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.235-241
    • /
    • 1989
  • Static according tests were carried out on a series of amorphous TbFe thin films of various composition under a constant laser irradiation condition. Examination of recorded domain configurations by using polarizing microscope led to the categorization of domain characteristics into 3 distinctly different types; i.c., type A: circular domains with smooth boundaries, the size not sensitive to variation of bias field, type B: domains of irregular shape at low bias, the size increasing and the boundaries getting smoother and more circular with increasing bias field and type C: not recordable. Critical factor which distinguishes among each types was fond to be the relative magnitude of H and H of the film near T, regardless of constituent atomic species. Micromagnetical process of thermomagnetic recording cycle was analyzed scheniatically for each type.

  • PDF

PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells

  • Ahmed, Muhammad Bilal;Islam, Salman Ul;Sonn, Jong Kyung;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.662-670
    • /
    • 2020
  • We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using Gateway™ technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.