• Title/Summary/Keyword: dolomite lime

Search Result 24, Processing Time 0.019 seconds

Selection of Chemicals for the Dissolved Phosphorus Control by Variations of Alkalinity and Hardness (용존인 제어를 위한 알칼리도와 경도 조절제의 선택)

  • Kim, Sungok;Kim, Hag Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.206-211
    • /
    • 2014
  • This study was done to find chemicals adequate to control alkalinity and hardness in order to reduce dissolved phosphorus in water bodies like rivers and lakes. Five chemicals were selected for the study: calcite, lime, dolomite, magnesite, and gypsum. Data were obtained from the calculations with MINTEQ model as a function of dosage variations of each chemical. Findings are as follows: Three out of the five chemicals are found to be effective in reducing the dissolved phosphorus, i.e., calcite, lime, and dolomite. Calcite and dolomite are able to lower the phosphorus concentration up to one thousandth fold whereas lime does one hundred thousandths fold. In viewpoint of pH variation, both calcite and dolomite seem to be safe since the pH does not increase over 8.3 even in case of overdose. In the same circumstance, with lime the pH increases beyond 9 which is considered to be the highest pH level for the protection of water ecosystem. Nevertheless it is recommendable to use lime in case where there are some difficulties in water quality control due to algae blooms.

Study on the Soil Improvement in the Grassland II. Effects of the dolomite particles and the shell powder application on soil characteristics, dry matter yield and nutritive value of forages in sandy loam soil (초지에서 토양 개량에서 관한 연구 II. 사양토에서 도로마이트 입자도와 패각분 시용이 토양 특성과 목초의 수량 및 사료가치에 미치는 영향)

  • Lee, J.K.;Choi, S.S.;Kim, M.J.;Yoon, S.H.;Park, G.J.;Choi, K.C.;Lee, S.C.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.4
    • /
    • pp.373-378
    • /
    • 1999
  • This study was conducted to investigate the effects of application of the dolomite particles and the shell powder on soil characteristics, dry matter yield and nutritive value of forage in sandy loam soil at the Experimental Field of National Livestock Research Institute, Suweon, from 1994 to 1996. This was compared with control, lime, dolomite 0.5mm, 2.0mm, 4.0mm, and shell powder in mixed pasture. Although there was no significant difference, average dry matter yield for 3 years was increased with the application of lime, dolomite 2.0mm, 0.5mm, control, 4.0mm and shell powder in order. Average crude protein yield of forages was increased with the application of dolomite 2.0mm, 0.5mm, control, lime, shell powder and 4.0mm in order. Lime requirement was slightly increased from 2,410 to 4,853kg per ha with the lapse of time. Although soil hardness was optimum level by second year, it was apt to become hard little by little. Solid phase of soil was lowered with dolomite 0.5mm treatment. The results demonstrated that dolomite and shell powder could be settled a dust problem in farms and a coast pollution as lime substitutes for soil improvement. Therefore, it is desirable for dry matter yield and crude protein yield to applicate the dolomite 2.0mm every 3 years and the shell powder more frequently in sandy loam soil.

  • PDF

Evaluating Heavy Metal Stabilization Efficiency of Chemical Amendment in Agricultural Field: Field Experiment (안정화제 처리에 따른 중금속 오염 농경지 복원의 효율성 평가: 현장실증시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Yoon, Hyun-Soo;Kim, Ha-Na;Kim, Tae-Hwan;Yeon, Kyu-Hun;Lee, Jin-Soo;Hong, Sung-Jo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1052-1062
    • /
    • 2011
  • Residual of heavy metals originated from abandoned metal mines in agricultural field can cause adverse effect on ecosystem and eventually on human health. For this reason, remediation of heavy metal contaminated agriculture field is a critical issue. In this study, five different amendments, agriculture lime, dolomite, steel slag, zeolite, and compost, were evaluated for stabilization efficiency of heavy metals in agricultural field. Applied mixing ratio of amendments was varied (2% or 6%) depending on properties of amendments. Result showed that soil pH was increased compared to control (6.1-6.7) after mixing with amendments and ordered as dolomite (7.2~8.3) > steel slag (6.7~8.1) > agriculture lime (6.6~7.4) > zeolite (6.2~6.9) > compost (6.1~7.1). Among other amendments, agriculture lime, steel slag, and dolomite showed the highest stabilization efficiency of heavy metals in soil. For Cd, stabilization efficiency was 49~72%, 51~83%, and 0~36% for agriculture lime, steel slag, and dolomite respectively. In case of Pb, 43~64, 37~73%, and 51~73% of stabilization efficiency was observed for agriculture lime, steel slag, and dolomite respectively. However, minimal effect of heavy metal stabilization was observed for zeolite and compost. Based on result of this study, amendments that can increase the soil pH were the most efficient to stabilize heavy metal residuals and can be adapted for remediation purpose in agricultural field.

Influence of pre-planting application of dolomite at various rates in coir-dust containing root media on the growth of red-leaf lettuce

  • Kim, Chang Hyeon;Choi, Jong Myung
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.176-185
    • /
    • 2016
  • This research was conducted to evaluate various levels of dolomitic lime incorporated as pre-planting fertilizers on the growth of red-leaf lettuce. To achieve this, three root media were formulated by mixing coir dust with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v), and ground pine bark (CD+GRPB, 6:4, v/v). During formulation, equal amounts of essential nutrients, except dolomitic lime, were incorporated into all root media and the levels of dolomitic lime were varied from 0 to $7.5g\;L^{-1}$ at 1.5 g increments. Seedlings of red-leaf lettuces at the 3rd leaf stage were transplanted into each medium treatment. Crop growths were measured 5 weeks after transplant and soil solutions were collected every week and analyzed for pH, EC, and nutrient concentrations. The treatments showing the heaviest fresh and dry weights in CD+ERH, CD+CRH, and CD+GRPB were 4.5 g, 4.5 g, and $7.5g\;L^{-1}$ of dolomite, respectively. The pHs of three root media yielding the highest crop growths were in the ranges of 6.4 to 7.1. These ECs in CD+CRH medium were around $1.0dS\;m^{-1}$ higher than those of CD+ERH and CD+GRPB when application rates of dolomitic lime were equal. $K^+$ concentrations were higher than $Ca^{+2}$ and $Mg^{+2}$ concentrations until week 2 in three root media. But $Ca^{+2}$ and $Mg^{+2}$ concentrations were higher than $K^+$ concentrations after week 3 in all root media. The concentrations of $PO_4{^{-3}}$ in all root media got abruptly lower until week 2. These results indicate that appropriate levels of dolomitic lime, as pre-planting nutrient charge fertilizers in CD+ERH and CD+GRPB media, are 4.5 and $7.5g\;L^{-1}$, respectively.

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.

Study on the Soil Improvement in the Grassland I. Effects of the dolomite particle and the shell powder application on soil characteristics, dry matter yield and nutritive value of forages in loam soil (초지에서 토양 개량에 관한 연구 I. 양토에서 도로마이트 입자도와 패각분 시용이 토양특성과 목초의 수량 및 사료가치에 미치는 영향)

  • Lee, J.K.;Choi, S.S.;Kim, M.J.;Park, G.J.;Yoon, S.H.;Shin, J.S.;Shin, D.E.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • This study was conducted to investigate the effects of application of the dolomite particle and the shell powder on soil characteristics, dry matter yield and nutritive value of forages in loam soil at the experimental field of National Livestock Research Institute, Suwon, from 1994 to 1996. Application treatments were control, lime, dolomite 0.5, 2.0, 4.0mm, and shell powder in mixed pasture. Rate of dust occurrence was greatly decreased according to dolomite application and the dissolving rate in soil was highest in shell powder application among treatments. Although there was no significant difference, average dry matter yield of forages for 3 years was slightly increased with the application of lime, shell powder, dolomite 0.5mm, 4.0mm, 2.0mm and control in order. Both Ca and Mg contents of forages were no differences among treatments in 1994. However, all treatments were higher than those of control in 1995. And K and Na contents of forages were no differences among treatments. Lime requirement was greatly increased from 2,630 to 6,150kg per ha with the lapse of time. Although soil hardness was optimum level at first, it was likely to become hard little by little after treatments. Solid phase of soil was lowered a little except for control. Organic matter and available $P_2O_5$ contents of soil were highest in shell powder application among treatments, and K, Ca and Mg contents of soil were no differences among treatments. Ca content was increased a little in 1995, but decreased a little in 1996 compared to that of soil before treatments in 1994. AIso, Mg content was lowered than that of soil before experiment in 1995 and 1996. The results demonstrated that use of dolomite and shell powder as lime substitutes could be reduced dust problem and coast pollution as well as soil improvement. Therefore, it is desirable to apply the dolomite and the shell powder every 3 years in loam soil.

  • PDF

Response of Plants and Changes of Soil Properties to Added Acid-Soil Ameliorants (산성토양 개량제 처리에 따른 식물의 생장반응과 토양 성질의 변화)

  • 문형태;박병규;김준호
    • The Korean Journal of Ecology
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 1997
  • Effects of addition of soil ameliorants on the growth and nutrient absorption of Zea mays, Miscanthus sinensis and Phytolacca americana were investigated. Acid soil from Yeocheon Industrial Complex were used for the control plot (AS). We made two treatment plots, acid soil + lime (AS + L) and acid soil + dolomite (AS+D). Ration of acid soil : soil ameliorants in freatment plot was 50 : 1(V:V). Acid soil and soil ameliorants were mixed thoroughly before use. Shoot length of corn in AS+L and AS+D was considerably increased by 141% and 137%, respectively, compared with that in AS. Pokeweed in AS+L and AS+D also increased by 183% and 152%, respectively, compared with that in AS. However, growth of Miscanthus sinensis showed slight difference between the control and the treatment plots. Biomass of corn and porkweed in the treatment plots were also greater than those in the control plots. During the growth experiment with corn, concentrations of Ca and Mg in soil were increased and A1 decreased with increased soil pH in the treatment plots. Amount of aluminum absorbed by corn in the control plot was greater than that in the treatment plots. In case of Miscanthus sinensis, however, aluminum absorption in the control plot was lower than those in the treatment plots.

  • PDF

Effect of Lime Application on Growth and Yield of Peanut at Newly Reclaimed Upland Soil (야산(野山) 개간지(開墾地) 토양(土壤)에서 땅콩의 생육(生育) 및 수량(收量)에 미치는 석회시용효과(石灰施用效果))

  • Kim, Heek-Kweon;Jeon, Jang-Hyeob;Kim, Dea-Hyang;Jeong, Ji-Ho;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.180-187
    • /
    • 1990
  • This experiment was conducted to find a methode reducing peant empty pods when it was cultivated on a newly reclaimed upland soil in Kimjae, Jeonbuk, Korea. Liming materials, slaked lime and dolomite were applied to the soil at two levels : lime requirement amount neutralizing the soil and one of 1.5 times. The results are summarized as the followings. 1. There was a yield increase of 27% from the field applied 1.5 times amount of dolomite Compared to that of slaked lime. The number of empty pods per plant was at the lowest level with the treatment of higher amount of dolomite. 2. At the maturing stage of the plant there was a positive significant correlation observed between the content of MgO and other parameters such as no, of branchs per plant dry weight per plant, no, of pods per plant and 100 seed-weight. But the correlation between MgO content and the no of empty pods was negatively significant at 5% level. 3. The content of CaO and MgO was significantly correlated to hull and pod volumes, pod surface area, hull thickness and hull weight. 4. Correlation coefficients between yield and the contents of Ca and Mg in soil at mauring stage were $0.572^{**}$ and $0.556^{**}$ respectively.

  • PDF

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Suggesting Optimum Mix Proportion of Hardener for Soil-pavement Concrete Incorporating Natural Organic Lime and Magnesia-lime (천연유기석회 및 고토석회를 조합한 흙 포장 콘크리트용 경화재의 최적배합안 도출)

  • Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Lots of soil-pavement concrete placed showed a number of problems such as decreasing strength, and durability. In this research, to provide a solution of the problem reported the wasting materials of natural organic lime and magnesia lime were used as a hardener to achieve sufficient performance of soil-pavement concrete. Namely, as a stimulus of blast furnace slag, the natural organic lime and magnesia lime were tested within the mix proportion of 0 to 10 % for each lime to make a new hardener. As a result, in the case of mortar with 1 to 3 % of cement to fine aggregate, 30 % replaced blast furnace slag showed the more favorable results with 5 to 5 % of mix proportion for natural organic lime and magnesia lime.