• Title/Summary/Keyword: dolomite

Search Result 227, Processing Time 0.025 seconds

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea II. Physical and Chemical Properties of the Whole Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) II. 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Um, Myung-Ho;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.79-85
    • /
    • 1991
  • This study reports on the physical and chemical properties of the whole soils (<2mm) derived from five major rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The properties were considered from the kind and frequency distribution of rock-forming minerals in the parent rocks. In particle size distribution, sand fractions were high in the soils from granite-gneiss, silt fractions mainly, in the residual soils from limestone, shale, and basalt. And clay fractions were particularly high in the colluvial soil from limestone and the old alluvial soil from basalt. pH, extractable Ca and Mg, and cation exchange capacity of the soils derived from limestone might be considered to be high due to the presence of sand and/or silt-sized calcite and dolomite inherited from the parent rocks. However, the soils derived from granite and granite-gneiss, being abundant in feldspars, quartz, and micas, showed a tendency to the contrary. A soil from shale composing of high quartz tended to have pH. extractable Ca, base saturation, and low exchangeable Al. In total element analysis, the soils derived from parent rocks with high contents of (i) orthoclase and micas, (ii) biotite, primary chlorite, and augite, and (iii) carbonate minerals and plagioclase as a rock-forming mineral showed a tendency to decrease the contents of $K_2O$, $Fe_2O_3$ and MgO, and CaO in comparison with those of their parent rocks.

  • PDF

Fluid Inclusion and Stable Isotope Studies of the Kwangsin Pb-Zn Deposit (광신 연 - 아연 광상의 유체포유물 및 안정동위원소 연구)

  • Choi, Kwang-Jun;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.505-517
    • /
    • 1997
  • Lead and zinc mineralization of the Kwangsin mine was formed in quartz and carbonate veins that filled fault-related fractures in the limestone-rich Samtaesan Formation of the Chosun Supergroup and the phyllite-rich Suchangni Formation of unknown age. A K-Ar date of alteration sericite indicates that the Pb-Zn mineralization took place during Late Cretaceous (83.5 Ma), genetically in relation to the cooling of the nearby Muamsa Granite (83~87 Ma). Mineral paragenesis can be divided into three stages (I, II, III): (I) the deposition of barren massive white quartz, (II) the main Pb-Zn mineralization with deposition of white crystalline quartz and/or carbonates (rhodochrosite and dolomite), and (III) the deposition of post-ore barren calcite. Mineralogic and fluid inclusion data indicate that lead-zinc minerals in middle stage II (IIb) were deposited at temperatures between $182^{\circ}$ and $276^{\circ}C$ from fluids with salinities of 2.7 to 5.4 wt. % equiv. NaCl and with log $fs_2$ values of -15.5 to -11.8 atm. The relationship between homogenization temperature and salinity data indicates that lead-zinc deposition was a result of fluid boiling and later meteoric water mixing. Ore mineralization occurred at depths of about 600 to 700 m. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S_{CDT}=9.0{\sim}14.5$ ‰) indicate a relatively high ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids (up to 14 ‰), likely indicating an igneous source of sulfur largely mixed with an isotopically heavier sulfur source (possibly sulfates in surrounding sedimentary rocks). There is a remarkable decrease of calculated ${\delta}^{18}O$ value of water in hydrothermal fluids with increasing paragenetic time: stage I, 14.6~10.1 ‰; stage IIa, 5.8~2.2 ‰; stage IIb, 0.8~2.0 ‰; stage IIc, -6.1~-6.8 ‰, This indicates a progressive increase of meteoric water influx in the hydrothermal system at Kwangsin. Measured and calculated hydrogen and oxygen isotope values indicate that the Kwangsin hydrothermal fluids was formed from a circulating (due to intrusion of the Muamsa Granite) meteoric waters which evolved through interaction mainly with the Samtaesan Formation (${\delta}^{18}O=20.1$ to 24.9 ‰) under low water/rock ratios.

  • PDF

Diagnostic assessment on vegetation damage due to hydrofluoric gas leak accident and restoration planning to mitigate the damage in a forest ecosystem around Hube Globe in Gumi (구미 휴브글로브 주변 삼림생태계에서 불화수소가스 유출 사고에 기인한 식생피해 진단 및 그 피해를 완화시키기 위한 복원 계획)

  • Kim, Gyung Soon;An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Jung, Song Hie;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • We obtained the following results from investigation on vegetation damage from 5 to 6 August, 2013, about one year after an accident that hydrofluoric acid leaked from a chemical maker, Hube Globe in Gumi. Pinus densiflora and Pinus strobus showed very severe damage. Ginko biloba, Quercus acutissima, Pinus rigida, Salix glandulosa, Hibiscus syriacus, and Lagerstroemia indica showed severe damage. Quercus variabilis, Lespedeza cyrtobotrya, and Miscanthus sinensis showed moderate damage. Quercus aliena, Smilax china, Arundidinella hirta, Ailanthus altissima, Robinia pseudoacacia, and Paulowinia coreana showed slight damage. We did not find any plants without leaf damage around there. This result means that fluoride damage still persists in this area as was known that fluoride remains for a long time in air, soil and water and exerts negative effects at all levels of an ecosystem. In addition, fluoride content contained in plant leaf depended on the distance from a fertilizer producing factory and vegetation damage tended to proportionate to the concentration in the Yeocheon industrial complex. In these respects, a measure for removal or detoxification of the remaining fluoride is urgently required around the hydrofluoric acid leak spot. Fertilizing of dolomite containing Ca and Mg, which can trap fluoride, was prepared as one of the restoration plans. In addition, phosphate fertilizing was added in order to enhance soil ameliorating effects. Furthermore, we recommend the introduction of tolerant plants as the second measure to mitigate fluoride damage. As the tolerant plants to make a new forest by replacing trees died due to hydrofluoric acid gas damage, we recommended Q. aliena and S. china, A. hirta, etc. were recommended as plant species to add mantle vegetation to the forest margin to ensure stable interior environment of the forest.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF

Meteorological Constraints and Countermeasures in Major Summer Crop Production (하작물의 기상재해와 그 대책)

  • Shin-Han Kwon;Hong-Suk Lee;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.398-410
    • /
    • 1982
  • Summer crops grown in uplands are greatly diversified and show a large variation in difference with year and location in Korea. The principal factor for the variation is weather, in which precipitation and temperature play a leading role and such a weather factors as wind, sun lights also influence production of the summer crops. Since artificial control of weather conditions as a main stress factor for crop production is almost impossible, it must be minimized only by an improvement of cultivation techniques and crop improvement. Precipitation plays a role as one of the most important factor for production of the summer crops and it is considered in two aspects, drought and excess moisture. This country, which belongs to monsoon territory, necessarily encounter one of this stress almost every year, even though the level is different. Therefore, the facilities for both drought and excess moisture are required, but actually it is not easy to complete for them. On this account, crops tolerant to drought, excess moisture and pests should be considered for establishing summer crops. For the districts damaged habitually every season, adequate crops should be cultured and appropriate method of planting, drainage and weed control should be applied diversely. Injuries by temperature is mainly attributed to lower temperature particularly in late fall and early spring, although higher temperature often causes some damages depending upon the kind of crops. Sometimes, lower temperature in summer season playa critical role for yield reduction in the summer crops. However, certain crops are prevented to some extent from this kind of stress by improving varieties tolerant to cold, hot weather or early maturing varieties. As is often the case, control of planting time or harvesting is able to be a good management for escaping the stress. Lodging, plant diseases and pests are considered as a direct or indirect damage due to weather stress, but these are characters able to be overcome by means of crop improvement and also controlled by other suitable methods. In addition, polytical supports capable of improving constitution of agriculture into modern industry is urgently required by programming of data for the damages, establishment of damage forecasting and compensation system.

  • PDF

Inorganic and Organic Geochemical Characteristics of Devonian Bitumen Carbonate in Alberta, Canada (캐나다 데본기 비투멘 탄산염암의 무기 및 유기 지화학적 특성 연구)

  • Choi, Ji-young;Kim, Ji-Hoon;Kil, Yong-Woo;Lee, Sung-Dong;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.21-35
    • /
    • 2011
  • Inorganic and organic geochemical characteristics of Devonian bitumen carbonates in Alberta were studied using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center of Canada. The results of elements analyses showed high Total Inorganic Carbon, low Total Nitrogen and Total Sulfur, and Rock-Eval pyrolysis showed double $CO_2$ peaks in the oxidation part. These mean that the Devonian bitumen carbonates are mainly composed of dolomite formed by diagenesis, and its crystal texture is dominantly subhedral to anhedral but often euhedral. Bitumen contents were 3.6~19.0% in Saleski 3-34-88-20w4 and 5.0~16.4% in Saleski 08-01-88-20w4, respectively. As samples color become dark, bitumen and Total Organic Carbon contents are generally increasing in two cores. The results of biomarker analyses showed that the contents of resins and asphaltenes were 5~28% higher than those of saturated hydrocarbon, interring that the bitumen has been heavily biodegradated. According to the results of carbon isotope analyses in each component of bitumen, asphaltenes had highest values and the others had constant values. However, their values were varied in the range of normal crude oil (-18~-30‰).

Influence of Application Rates of Dolomitic Lime in the Acid Substrate on the Reduction of Bicarbonate Injury during Vegetative Growth of the 'Seolhyang' Strawberry (산성 혼합상토의 고토석회 시비수준이 영양생장 중인 '설향' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Dae Young;Kim, Seung Yu
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.220-227
    • /
    • 2016
  • The objective of this research was to investigate the influence of application rates of dolomitic lime in the acid substrate on the mitigation of high bicarbonate damage in 'Seolhyang' strawberry. For this purpose, an acid substrate was formulated by mixing of sphagnum peat moss and pine bark with the ratio of 5:5 (v/v). The pH, EC and CEC of the substrate analyzed before application of dolomite were 4.07, $0.46dS{\cdot}m^{-1}$, and $91.3cmol+/kg^{-1}$, respectively. To adjust the pH of substrate, various amounts of dolomitic lime [$CaMg(CO_3)_2$] such as 0 (control), 1, 2, 3, and $4g{\cdot}L^{-1}$ were added during substrate formulation. Then, seedlings with 3 leaf stage were transplanted as mother plants and those were fed with Hoagland solution containing $240mg{\cdot}L^{-1}$ of the $HCO_3{^-}$. The growth parameters of mother plants 140 days after transplanting, such as plant height, chlorophyll content, and fresh weight were the highest in the treatments of 2 and $3g{\cdot}L^{-1}$ of dolomitic lime. The physiological disorders in mother plants were not observed in the 1, 2 and $3g{\cdot}L^{-1}$ treatments, but the symptoms of Ca, K and B deficiencies were observed in the 0 and $4g{\cdot}L^{-1}$ treatments. During the propagation period, the number of daughter plants derived from each mother plant were 21.0, 29.5, 35.8, 27.3 and 16.0 in the treatments of 0, 1, 2, 3 and $4g{\cdot}L^{-1}$, respectively. The substrate pH during cultivation of mother plants were maintained at appropriate levels for the 1 and $2g{\cdot}L^{-1}$ treatments, whereas it was the highest in $4g{\cdot}L^{-1}$ treatment. The contents of macro- and micro-elements in the above ground tissue were the highest in $2g{\cdot}L^{-1}$ and the lowest in $4g{\cdot}L^{-1}$ lime treatments. Above results suggest that the bicarbonate injury originated from ground water can be mitigated by adjusting the amount of dolomitic lime incorporated into the acid substrate.

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF