• Title/Summary/Keyword: dogbone(RBS) 접합부

Search Result 4, Processing Time 0.019 seconds

Lateral Stiffness of Steel Moment Frames Having Dogbone Seismic Connection (독본(dogbone) 내진접합부를 갖는 철골 모멘트골조의 횡강성 평가)

  • 이철호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.639-647
    • /
    • 2002
  • A simplified analytical procedure is presented to estimate the reduction of elastic lateral stiffness of steel moment frames arising from the radius-cut dogbone weakening. With the original radius-cut dogbone shape, it is almost impossible or too complicated to integrate analytically the mathematical expressions encountered when applying the conjugate beam method to compute the beam deflection component. In this study, the problem is circumvented by replacing the original radius-cut dogbone with an equivalent dogbone of constant width. The equivalence between the two is established by imposing an equal dogbone elongation criterion. This approach is justified by using a calibrated finite clement analysis. Then, the elastic lateral deflection components from the column, panel zone, and beam are derived for a typical beam-column subassembly. The derived results can be used to evaluate the reduction of the frame lateral stiffness. Case studies conducted within some practical ranges of frame configurations show that the reduction in frame lateral stiffness due to the presence of dogbone cut is on the order of 1 to 2 percent and is reasonably negligible in practical sense.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.

Re-evaluation of Force Transfer Mechanism of Reduced Beam Section (Dogbone) Seismic Steel Moment Connections (보 플랜지 절취형 (독본) 내진 철골모멘트 접합부의 응력전달 메카니즘 재평가)

  • 이철호;김재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.221-230
    • /
    • 2003
  • Employing classical beam theory for the design of RBS seismic steel moment connections was brought into question in this study, Both the experimental strain data and analytical results from the calibrated finite element analysis confirmed that the shear transfer mechanism in the RBS connection is completely different from that as predicted by classical beam theory Plausible explanations of a higher incidence of brittle fractures observed in the specimens with bolted-webs were presented. It was pointed out that the practice of providing web bolts uniformly along the beam depth is not consistent with the load path identified by both experimental and analytical results. More rational bolted-web details were proposed based on the identified principal load path,.

  • PDF