• Title/Summary/Keyword: docking model

Search Result 138, Processing Time 0.028 seconds

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

Scheduling Problem of Receiving and Shipping Trucks for Cross Docking Systems (크로스도킹시스템을 위한 하역과 선적 트럭의 일정계획)

  • Yu Woo yeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.79-93
    • /
    • 2002
  • Cross docking is a material handling and distribution concept in which products move directly from receiving dock to shipping dock, without being stored in a warehouse or distribution center. Depending on the facility and operating conditions or strategies employed, it is possible to generate various cross docking scenarios or models. The cross docking model, which is studied in this research, assumes there are a separate receiving dock and a separate shipping dock. It is also assumed that the products contained in a receiving truck and the products needed for a shipping truck are known in advance. Furthermore, the study is restricted to scenarios where there is only one receiving dock and only one shipping dock at the warehouse. The research objective is to find the best truck spotting sequence for both receiving and shipping trucks to minimize total operation time (i.e., the makespan) of the cross docking system.

A Genetic Algorithm for Scheduling of Trucks with Inbound and Outbound Process in Multi-Door Cross Docking Terminals (다수의 도어를 갖는 크로스도킹 터미널에서 입고와 출고를 병행하는 트럭일정계획을 위한 유전알고리즘)

  • Joo, Cheol-Min;Kim, Byung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • Cross docking is a logistics management concept in which items delivered to a terminal by inbound trucks are immediately sorted out, routed and loaded into outbound trucks for delivery to customers. Two main advantages by introducing a cross docking terminal are to consolidate multiple smaller shipment into full truck load and remove storage and order picking processes to save up logistics costs related to warehousing and transportation costs. This research considers the scheduling problem of trucks in the cross docking terminals with multi-door in an inbound and outbound dock, respectively. The trucks sequentially deal with the storage process at the one of inbound doors and the shipping process at the one of the outbound doors. A mathematical model for an optimal solution is derived, and genetic algorithms with two different chromosome representations are proposed. To verify performance of the GA algorithms, we compare the solutions of GAs with the optimal solutions and the best solution using randomly generated several examples.

Homology Modeling and Docking Studies of Streptomyces peucetius CYP147F1 as Limonene Hydroxylase

  • Bhattarai, Saurabh;Liou, Kwangkyoung;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.917-922
    • /
    • 2012
  • Homology modeling of Streptomyces peucetius CYP147F1 was constructed using three cytochrome P450 structures, CYP107L1, CYPVdh, and CYPeryF, as templates. The lowest energy SPCYP147F1 model was then assessed for stereochemical quality and side-chain environment by Accelrys Discovery Studio 3.1 software. Further activesite optimization of the SPCYP147F1 was performed by molecular dynamics to generate the final SPCYP147F1 model. The substrate limonene was then docked into the model. The model-limonene complex was used to validate the active-site architecture, and functionally important residues within the substrate recognition site were identified by subsequent characterization of the secondary structure. The docking of limonene suggested that SPCYP147F1 would have broad specificity with the ligand based on the two different orientations of limonene within the active site facing to the heme. Limonene with C7 facing the heme with distance of $3.4{\AA}$ from the Fe was predominant.

On the Docking Analysis of Global Ship Structure Using Simplified Grillage Model (간이화된 격자 구조 모델을 사용한 선박의 도킹 해석에 대하여)

  • Kim, Sung-Chan;Ryu, Cheol-Ho;Lee, Jang-Hyun;Lee, Kyung-Seok;Baek, Ki-Dae;Sohn, Sang-Yong;Choi, Joong-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.710-718
    • /
    • 2008
  • This paper presents a simple and fast approach to plan the arrangement of supports and to do a ship docking analysis. The unpredicted structural damages often happen from a docking works as the size of ships are getting larger and larger. In docking a ship, excessive reaction forces from supports are primary causes of the structural damage. The grillage analysis method is employed to simply calculate only the reaction forces at supports. The grillage modeling strategies are proposed to improve the accuracy. In this paper, the results obtained by the proposed approach are compared with those of the current whole-ship FEA for typical types of ships. Comparison shows that the results from the present grillage approaches are reasonably in a good agreement with the 3-D full F.E one. Finally, an integrated program developed for the ship docking analysis is described.

Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach

  • Jagadeb, Manaswini;Konkimalla, V. Badireenath;Rath, Surya Narayan;Das, Rohit Pritam
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.283-288
    • /
    • 2014
  • Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.

Experimental Study on Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle (비쥬얼 서보 자율무인잠수정의 수중 도킹에 관한 실험적 연구)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Ji-Hong;Kim, Sea-Moon;Hong, Young-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.89-93
    • /
    • 2003
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), the ocean engineering branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) to test underwater docking. This paper introduces the AUV model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. A small long baseline acoustic positioning system was developed to monitor and record the AUV's position for the experiment in the Ocean Engineering Basin of KRISO, KORDI. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the docking test of the AUV in near future.

  • PDF

Binding Interaction Analysis of Neuromedin U Receptor 1 with the Native Protein Neuromedin U

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Neuromedin, a neuropeptide, which is involved in various functions that include contractile activity on smooth muscle, controlling the blood flow and ion transport in the intestine, increased blood pressure and regulation of adrenocortical function. It is involved in the pathophysiology of various immune mediated inflammatory diseases like asthma. In this study, we have performed protein-protein docking analysis of neuromedin U - neuromedin U receptor 1 complex. We have developed homology models of neuromedin U, and selected a reliable model using model validation. The model was docked with the receptor model, to analyse the crucial interactions of the complex. This study could be helpful as a tool in developing novel and potent drugs for the diseases related with neuromedin U receptor 1.

Mathematical Model for Cross Docking Systems without Temporary Storage (임시 보관 장소를 보유하지 않은 크로스도킹 시스템을 위한 수학적 모델)

  • Yu, Woo-Yeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • 크로스도킹이란 창고나 물류센터에 하역된 물품이 저장됨이 없이 도착지별로 재분류되어서 직출하되는 물류 시스템이다. 크로스도킹은 물류비용의 큰 비중을 차지하는 보관비용을 감소시킬 수 있을 뿐만 아니라 고객의 요구에 빠른 대응을 할 수 있다는 장점을 지니고 있다. 크로스도킹이 성공적으로 수행되기 위해서는 창고나 물류센터의 입고에서부터 출고까지의 모든 작업들이 계획적이고 원활하게 수행되어져야만 한다. 본 연구에서는 임시보관 장소를 보유하지 않은 크로스도킹 시스템의 총 운영시간을 최소화하기 위한 입고 트럭과 출고 트럭의 일정계획 수립을 위한 수학적 모델을 개발하였다.

Comparison of X-ray Crystallographic Structures and Docking Models of Dihydrofolate Reductase-Inhibitor Complexes (Dihydrofolate Reductase-저해제 복합체에 대한 X-선 결정체 구조와 docking model의 구조 비교)

  • 안미현;최인희;김춘미
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.416-425
    • /
    • 2002
  • A comparative study to validate the reliability of a fully automated docking program, FlexiDock, was carried out to predict the binding modes of DHFR-inhibitor complex. The inhibitors were extracted from the crystallographically determined DHFR-NADP$^{+}$(H)-inhibitor ternary complexes of human, Escherichia coli and Candida albicans and then docked back into the remaining DHFR-NADP$^{+}$(H) binary complexes using FlexiDock. The resulting conformations and orientations were compared to the original crystal complex structures for reproducibility. Then, folate, the substrate, and known inhibitors such as methotrexate, piritrexim and trimethoprim were docked into the wild-type human DHFR and their binding modes were compared with X-ray crystallographic or other modeling data. The root mean square deviations (RMSDs) for ligands ranged from 1.14 to 1.57$\AA$, and the protein backbone RMSDs from 0.94 to 1.26$\AA$. FlexiDock reproduced the orientations and binding modes of all seven ligands in good agreement with the crystal structures. It proved to be a reliable and efficient program in studying binding modes of DHFR-inhibitor complexes of different species, and the information obtained from this work may provide additional insight into the design of new agents with improved activity.ity.