• Title/Summary/Keyword: division pharmaceutical method

Search Result 155, Processing Time 0.024 seconds

Classification of Piperazinylalkylisoxazole Library by Recursive Partitioning

  • Kim, Hye-Jung;Park, Woo-Kyu;Cho, Yong-Seo;No, Kyoung-Tai;Koh, Hun-Yeong;Choo, Hyun-Ah;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2008
  • A piperazinylalkylisoxazole library containing 86 compounds was constructed and evaluated for the binding affinities to dopamine (D3) and serotonin (5-HT2A/2C) receptor to develop antipsychotics. Dopamine antagonists (DA) showing selectivity for D3 receptor over the D2 receptor, serotonin antagonists (SA), and serotonin-dopamine dual antagonists (SDA) were identified based on their binding affinity and selectivity. The analogues were divided into three groups of 7 DAs (D3), 33 SAs (5-HT2A/2C), and 46 SDAs (D3 and 5-HT2A/2C). A classification model was generated for identifying structural characteristics of those antagonists with different affinity profiles. On the basis of the results from our previous study, we conducted the generation of the decision trees by the recursive-partitioning (RP) method using Cerius2 2D descriptors, and identified and interpreted the descriptors that discriminate in-house antipsychotic compounds.

Effects of Physiological Active Substance Extracted from Silkworm Fece

  • Ju, Wan-Taek;Kim, Kee-Young;Sung, Gyoo-Byung;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.179-184
    • /
    • 2014
  • Silkworm (Bombyx mori ) feces have long been used in the pharmaceutical and food industries as a natural colorant. However, there is limited data on the bioactive compounds that constitute silkworm feces. This research emphasizes the antioxidant activity of different solvent and flavonoid extracts of silkworm feces. The solvents were ethanol, butanol, and water, while the methods utilized included ultrasonification, stirrer, reflux, and reflux after ultrasonification extraction. Results showed that butanol ultrasonification extraction (BUE) yield the lowest extraction (1.75%), while the other methods yielded 7 to 14%. The total polyphenol content utilizing BUE was 3.3 mg TAE/g, while water ultrasonification extraction (WUE) yielded the highest extraction rate with 51.6 mg TAE/g. The total flavonoid content was significantly higher using ethanol reflux extraction (EUE) at 266.8 mg QRE/g BUE, which was 158.3 and 151.3 mg QRE/g. Both DPPH radical scavenging activity and SOD-like (superoxide dismutase) activity, showed significant antioxidant effects. Finally, all other extracts except for BUE had a-glucosidase inhibition at 60%. Therefore, an effective extraction method for physiologically active substances must be selected.

IL -12 Expression by Cefodizime As an Immuno-modulator

  • Joo, Seong-Soo;Kwon, Hee-Seung;Oh, Won-Sik;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.306.1-306.1
    • /
    • 2002
  • Cefodizime has originally been developed for treating infections as antibiotics. However. according to some of recent studies. cefodizime. a third generation cephalosporin. may potentially have the capability of stimulating chemotactic activity of neutrophils and monocytes as well as the strong immuno-modulator. In this study. we studied to learn about the expressive effect of dentritic cells and macrophage. With this background. We have studied to see if cefodizime can be a potential substance inducing an immunological function in dendritic cells and peritoneal macrophages. IL-12 activates NK cell and macrophage, and shows antiviral effect by excreting INF-${\gamma}$. In vitro. total RNAs were extracted from murine dentritic cell at 4, 8, 12, 24hr after the application of 10, 50, 100${\gamma}g$/ml of cefodizime wighout other stimulators. And we analyzed IL-12 mRNA using RT-PCR method. In conclusion. IL-12 mRNA was increased. and the results suggest that cefodizime activate TH1 cell induction, CTL differentiation as well as accelerating the increase of NK. LAK cell.

  • PDF

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

HPLC Determination and Steady-State Bioavailability Study of Levodropropizine Sustained-release Tablets in Dogs

  • Yan, Lin;Li, Tongling;Zhang, Rongqin;Xu, Xiaohong;Zheng, Pengcheng
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.514-519
    • /
    • 2006
  • A simple HPLC method using UV detection was developed and validated for the determination of levodropropizine (LDP) In dog plasma. The sample was prepared for injection using a liquid-liquid extraction method with 1-phenypiperazine as the internal standard. The mobile phase was methanol - diethylamine solution (0.05 M) (20:80, v/v, pH adjusted to 3.0 with $H_3PO_4$) with a detection wavelength of 240 nm. The limit of quantitation (LOQ) of LDP in a biological matrix was determined to be 25.25 ng/mL. The calibration curve was linear across the concentration range of 25.25 to 2020 ng/mL. The intra-day and inter-day precision values (CV%) were within 7% and accuracy (R.E. %) was within 6% of the nominal values for medium (252.5 ng/mL) and high (2020 ng/mL) LDP concentrations. For the LDP concentration at the LOQ, the intra-day and inter-day precision and accuracy were within 20% and 10%, respectively. The average absolute recovery for LDP was 70.28%. This method was successfully used to analyze plasma samples in a steady-state bioavailability study of a newly developed sustained-release LDP tablets (SR) using immediate-release tablets (IR) as the reference. The relative bioavailability of the SR was determined to be $106.3\;{\pm}\;12.8%$ (n=6). The $C_{max}$ of the SR was significantly lower (p<0.05), and the $t_{max}$ was significantly longer than that of the IR (p<0.05). The results of ANOVA and two one-sided tests indicated that the SR exhibited acceptable sustained release properties and was bioequivalent to the IR.

Development of Quantification Method and Stability of ${\Delta}^9$-Tetrahydrocannabinol and 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol in Oral Fluid (타액 중 ${\Delta}^9$-Tetrahydrocannabinol 및 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol의 분석법 확립 및 안정성 검토)

  • Choi, Hye-Young;Baeck, Seung-Kyung;Jang, Moon-Hee;Choi, Hwa-Kyung;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.54 no.4
    • /
    • pp.226-231
    • /
    • 2010
  • Oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing. In this study, an analytical method for the detection and quantification of ${\Delta}^9$-tetrahydrocannabinol (THC) and its metabolite, 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THC-COOH) in oral fluid by SPE and GC-MS was established and fully validated. The stability of THC and THC-COOH in oral fluid during storage was also determined by examining the THC and THC-COOH concentration changes depending on time and container materials. Oral fluid samples were kept over 21 days at room temperature, $-4^{\circ}C$ and $-20^{\circ}C$ in two different specimen collection tubes; glass and polypropylene tubes. Three replicates for each condition with different temperature and types of a container were analyzed at five different time points over 21 days. When oral fluid samples were stored in glass tubes, the loss of both THC and THC-COOH was less than 10% at all room temperature, $-4^{\circ}C$ and $-20^{\circ}C$. However, in polypropylene tubes, the loss of both THC and THC-COOH increased significantly over the study period. In particular, the concentration of THC decreased more rapidly than that of THC-COOH at room temperature and the maximal percentage of THC lost was 90.3% after 21 days. The result indicates that it would be necessary to collect oral fluid samples in glass containers and cool the samples until analysis in order to prevent the degradation of analytes.

Screening of New Bioactive Materials from Microbial Extracts of Soil Microorganism (I) Antimicrobial Activity from 200 Sampled Using Microdilution Assay

  • Jung, Sang-Oun;Kim, Joon;Chang, Il-Moo;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.278-285
    • /
    • 1998
  • The microdilution assay recommended by NCCLS (National Committee for Clinical Laboratory Standards) is one of the standardized methods of antibiotic susceptibility test. This method has been widely used clinically to obtain MIC values of antibiotics on pathogenic microorganisms. It is more convenient, rapid and simple to test many samples than other test methods such as agar diffusion assay and broth macrodilution assay. The screening of antimicrobial agents from microbial extracts is too laborious in its process. Therefore, a number of screening methods having more simple procedure have been developed. In our laboratory, we applied microdilution assay for screening the antimicrobial agents. This assay showed dose-response results and was more sensitive than disc diffusion assay in our system. We tested 200 samples of microbial extracts originated from 100 microbial strains and selected several samples as potential candidates. In this report, we show that the microdilution assay is more convenient method in screeing of antibiotic susceptibility than those previously reported.

  • PDF

Prediction on the Chiral Behaviors of Drugs with Amine Moiety on the Chiral Cellobiohydrolase Stationary Phase Using a Partial Least Square Method

  • Choi, Sun-Ok;Lee, Seok-Ho;Park Choo , Hea-Young
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1009-1015
    • /
    • 2004
  • Quantitative Structure-Resolution Relationship (QSRR) using the Comparative Molecular Field Analysis (CoMFA) software was applied to predict the chromatographic behaviors of chiral drugs with an amine moiety on the chiral cellobiohydrolase (CBH) columns. As a result of the Quantitative CoMFA-Resolution Relationship study, using the partial least square method, prediction of the behavior of drugs with amine moiety upon chiral separation became possible from their three dimensional molecular structures. When a mixed mobile phase of 10 mM aqueous phosphate buffer (pH 7.0) - isopropanol (95 : 5) was employed, the best Quantitative CoMFA-Resolution Relationship, derived from the study, provided a cross-validated $q^2$ = 0.933, a normal $r^2$ = 0.995, while the best Quantitative CoMFA-Separation Factor Relationship, also derived from the study, yielded a cross-validated $q^2$ = 0.939, a normal $r^2$ = 0.991. When all of these results are considered, this QSRR-CoMFA analysis appears to be a very useful tool for the preliminary prediction on the chromatographic behaviors of drugs with an amine moiety inside chiral CBH columns.

Structural and Physicochemical Studies on DA-5018, a New Capsaicin Derivative (새로운 Capsaicin 유도체 DA-5018의 구조 및 물리화학적 성질 연구)

  • Kim, Heung-Jae;Lee, Jong-Jin;Lee, Eung-Doo;Shim, Hyun-Joo;Lee, Sang-Deuk;Ok, Kwang-Dae;Kim, Won-Bae;Park, No-Sang
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.119-123
    • /
    • 1997
  • The physicochemical and structural properties of new capsaicin derivative, DA-5018, were examined. The reference standard of this compound was obtained by the recrystallization. A method for the determination of the dissociation constant of the compound is described. pH-solubility and distribution coefficient were determined by chromatographic method. Fundamental properties on thermal behaviors were investigated by TG, DTA and DSC. Structural analysis based on spectroscopic method coincided with the chemical structure of DA-5018. Approximate dissociation constant of the compound determined by UV spectral method was 9.35. Solubilities and partition coefficients in various pH buffer solution appeared pH-dependency. No crystal transition or further transition was found in the thermal analysis. This compound showed good stability, but pH 13 buffer and acetone made some degradative products.

  • PDF

Preparation of Highly Porous Poly(d,l-lactic-co-glycolic acid) (PLGA) Microspheres (다공성 PLGA 마이크로입자 제조법의 최적화 연구)

  • Park, Hong-Il;Kim, Huyn-Uk;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • Poly(lactic-co-glycolic acid) (PLGA) microspheres have been a useful tool as a controlled drug delivery system for peptides and proteins. Recently, porous microspheres have gained great attention as inhalation drug delivery system due to their low aerodynamic densities. Here, we report highly porous PLGA microspheres, which were prepared by using a single o/w emulsification/solvent evaporation method. Two types of porogen, i.e., (i) extractable Pluronic F127 and (ii) gas foaming salt of ammonium bicarbonate, were used to induce pores on the surface of PLGA microspheres. The respective preparation conditions on dp/cp ratio and porogen concentration were determined by the previous preliminary experiments, and other preparation factors were further optimized on the basis of PLGA Mw and porogen type. The morphological features examined by scanning electron microscope (SEM) show these porous microspheres have highly porous surface structure with a diameter range of 20${\sim}$30 ${\mu}$m. These highly porous PLGA microspheres, which have much lower density, would be a practical aerosol system for pulmonary drug delivery.