• Title/Summary/Keyword: diversity-multiplexing trade-off

Search Result 6, Processing Time 0.04 seconds

On the Optimal Cyclic Delay Value in Cyclic Delay Diversity (순환 지연 다이버시티 기법에서의 최적의 순환 지연 값)

  • Kim, Yong-June;Rim, Min-Joong;Jeong, Byung-Jang;Noh, Tae-Gyun;Kim, Ho-Yun;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we propose a method to determine the optimal cyclic delay value of cyclic delay diversity(CDD) in orthogonal frequency division multiplexing(OFDM) systems. As the cyclic delay value increases, we can get signal to interference and noise ratio(SINR) gain by diversity effect, while SINR loss increases because of channel estimation errors. If the optimal delay value obtained by the proposed method is applied to CDD scheme, we can minimize the required SINR for a given FER(frame error rate) under the above mentioned trade-off.

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.

Study on efficient scheduing strategies for multiuser MIMO systems (멀티유저 MIMO 시스템에서 효과적인 스케쥴링 정책 연구)

  • Kim, Jae-Hong;Kim, Se-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.201-204
    • /
    • 2006
  • In this paper, we propose efficient scheduling strategy for Multi-user MIMO systems that find advantageous trade off solution between multiuser diversity and spatial diversity, spatial multiplexing technique. Specifically, we suggest P-SFS(Pseudo-SNR Fair scheduling) algorithm that consider throughput and fairness problem. also we propose channel aware Antenna deployment that decide how to use assigned multiple antennas by the information of each user's channel condition.

  • PDF

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.

Introductions of Pre-Rake with Frequency Domain Equalizer and Cyclic Prefix Reduction Method in CDMA/TDD Multi-code Transmission (CDMA/TDD 다중코드 전송에서 주파수 도메인 등화기와 결합된 Pre-Rake 와 Cyclic Prefix 최소화 방법)

  • Lee, Jun-Hwan;Jeong, In-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • In this paper we propose a Pre-rake system applied with a frequency domain equalizer in TDD/CDMA multi-code transmission. The Pre-rake system has been well known technique in TDD/CDMA to make a receiver simple. However, it still has residual losses of path diversity and signal to noise ratio (SNR). However, gathering all the residual paths demands an additional hardware such as a rake combiner at the receiver. For the reason Pre/Post-rake system has already been proposed at up/downlink correlated channel conditionunder the assumption of noisier channel. There is a trade-off between the first purpose of Pre-rake that makes hardware simple at the receiver and the performance improvement. From the point the frequency domain equalizer (FDE) can be considered in Pre/Post-rake to supply the receiver with the flexible equalizing methods with rather reduced complexity compared with time domain rake combiner or equalizers. Pre-rake itself increases the number of multipath, which results from the convolution of Pre-rake filter and wireless channel, and FDE must be well matched to Pre/Post-rake, while it considers the relationship of hardware complexity and the performance. In this paper, the Pre-rake/Post-FDE system is introduced at TDD/CDMA multi-code transmission. In addition, the cyclic prefix reduction method in the proposed system is introduced, and the theoretical analysis to the proposed system is given by assuming Gaussian approximation, and finally the numerical simulation results are provided.