• Title/Summary/Keyword: diurnal tide

Search Result 66, Processing Time 0.033 seconds

Current Systems in the Adjacent Seas of Jeju Island Using a High-Resolution Regional Ocean Circulation Model (고해상도 해양순환모델을 활용한 제주도 주변해역의 해수유동 특성)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.211-223
    • /
    • 2020
  • With the increasing demand for improved marine environments and safety, greater ability to minimize damages to coastal areas from harmful organisms, ship accidents, oil spills, etc. is required. In this regard, an accurate assessment and understanding of current systems is a crucial step to improve forecasting ability. In this study, we examine spatial and temporal characteristics of current systems in the adjacent seas of Jeju Island using a high-resolution regional ocean circulation model. Our model successfully captures the features of tides and tidal currents observed around Jeju Island. The tide form number calculated from the model result ranges between 0.3 and 0.45 in the adjacent seas of Jeju Island, indicating that the dominant type of tides is a combination of diurnal and semidiurnal, but predominantly semidiurnal. The spatial pattern of tidal current ellipses show that the tidal currents oscillate in a northwest-southeast direction and the rotating direction is clockwise in the adjacent seas of Jeju Island and counterclockwise in the Jeju Strait. Compared to the mean kinetic energy, the contribution of tidal current energy prevails the most parts of the region, but largely decreases in the eastern seas of Jeju Island where the Tsushima Warm Current is dominant. In addition, a Lagrangian particle-tracking experiment conducted suggests that particle trajectories in tidal currents flowing along the coast may differ substantially from the mean current direction. Thus, improving our understanding of tidal currents is essential to forecast the transport of marine pollution and harmful organisms in the adjacent seas of Jeju Island.

Nonlinear Tidal Characteristics along the Uldolmok Waterway off the Southwestern Tip of the Korean Peninsula

  • Kang, Sok-Kuh;Yum, Ki-Dai;So, Jae-Kwi;Song, Won-Oh
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 2003
  • Analyses of tidal observations and a numerical model of the $M_2$ and $M_4$ tides in the Uldolmok waterway located at the southwestern tip of the Korean Peninsula are described. This waterway is well known fer its strong tidal flows of up to more than 10 knots at the narrowest part of the channel. Harmonic analysis of the observed water level at five tidal stations reveals dramatic changes in the amplitude and phase of the shallow water constituents at the station near the narrowest part, while survey results show a decreasing trend in local mean sea levels toward the narrow section. It was also observed that the amplitudes of semi-diurnal constituents, $M_2$ and $S_2$ are diminishing toward the narrowest part of the waterway. Two-dimensional numerical modeling shows that the $M_2$ energy flux is dominated by the component coming from the eastern boundary. The $M_2$ energy is inward from both open boundaries and is transported toward the narrow region of the channel, where it is frictionally dissipated or transferred to other constituents due to a strong non-linear advection effect. It is also shown that the $M_4$ generation is strong around the narrow region, and the abrupt decrease in the M4 amplitude in the region is due to a cancellation of the locally generated M4 with the component propagated from open boundaries. The superposition of both propagated and generated M4 contributions also explains the discontinuity of the M4 phase lag in the region. The tide-induced residual sea level change and the regeneration effect of the $M_2$ tide through interaction with $M_4$ are also examined.

Seasonal Changes of Water Properties and Current in the Northernmost Gulf of Aqaba, Red Sea

  • Manasrah, Riyad;Zibdah, Mohammad;Al-Ougaily, Firas;Yusuf, Najim;Al-Najjar, Tariq
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.103-116
    • /
    • 2007
  • Seasonal changes of tide signal(s), temperature, salinity and current were studied during the years 2004-2005 in the northernmost Gulf of Aqaba, which is under developmental activities, to obtain scientific bases for best management and sustainability. Spectrum analysis revealed permanent signals of tide measurements during all seasons, which represented semidiurnal and diurnal barotropic tides. The other signal periods of 8.13, 6.10-6.32, 4.16 and 1.02-1.05 h were not detected in all seasons, which were related to shallow water compound and overtides of principle solar and lunar constituent and to seiches generated in the Red Sea and the Gulf of Aqaba. Spatial and temporal distribution of temperature, salinity and density showed significant differences between months in the coastal and offshore region and no significant differences among the coastal sites, between the surface and bottom waters and between coastal and offshore waters. Therefore, the temporal and spatial variation of water properties in the northernmost Gulf of Aqaba behave similarly compared to other parts. The coastal current below 12 m depth was weak $(3-6\;cms^{-1})$ and fluctuated from east-northeastward to west-southwestward (parallel to the shoreline), which may be related to the effect of bottom topography and/or current density due to differential cooling between eastern and western parts in the study area, and wind-induced upwelling and downwelling in the eastern and western side, respectively. The prevailing northerly winds and stratification conditions during summer were the main causes of the southward current at 6 and 12 m depths with average speed of 28 and $12cms^{-1}$ respectively.

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

Environmental Character and Catch Fluctuation of Set Net Ground in the Coastal Water of Hanlim in Cheju Island II. Fluctuation of Temperature, Salinity and Current (제주도 한림 연안 정치망 어장의 환경특성과 어획량 변동에 관한 연구 II. 수온 및 염분의 변동과 해수의 유동)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.98-104
    • /
    • 1999
  • To investigate the relationships between ocean environmental characteristics, the time-series data of temperature and salinity observed at a station near at Hanlim set net in 1995 and 1996 are analyzed, and the results are as follow ; 1. In hanlim set net, the diurnal range of temperature and salinity variation in summer is very large and the amplitude of short-period fluctuation of temperature and salinity is very large. That is, not only the water of the middle and bottom layers (low temperature and high salinity) but also the coalstal water (high temperature and low salinity) appears alternatively depending on the current direction 2. from the result of mooring for 22 days in Hanlim set net, the mean speed and direction of tidal current in neap tide were 9.1 cm/sec and south westward in ebb time, and 11.6 cm/sec and north or northeastward in flood time, respectively. The highest speed of the current was 15cm/sec in ebb time, and 22.6 cm/sec in flood time. The mean speed and direction of tidal current in spring tide were 10.4 cm/sec, and southwestward in ebb time, and 12.3 cm/sec, and north or northestward in flood time, respectively. The highest speed of the current was 19.4 cm/sec in ebb time, and 20 cm/sec in flood time respectively. The mean speed of the current in flood time was larger than that in ebb time. The velocity vector along the major axis of semidiurnal tide ($M_2$) component was 1.5 times larger than that of diurnal tide ($K_1$), The major directions of two compornants were northwestward and east-southeastward and residiual current were 3.25 cm/sec and northwestward-directed. Result of TGPS Buoy tracer for 3 days between Biyang-Do and Chgui-Do showed that the mean speed was 1.6 knot in ebb time and 1.3 knot in flood time. Direction of tidal was southwestward in ebb time and northeastward in flood time respectively. The maximum current speed was 4.8 knot in ebb time and 3.7 knot in flood time respectively. The mean speed and direction of tidal in of offshore were 1.7 knot and northwestward in flood time. The residual current appeared 0.3 knot northeastward.

  • PDF

Tidal Computations for the Southern Part of the East Sea (동해 남부해역의 조석계산)

  • 정태성;이종찬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1991
  • A two-dimensional numerical model. using finite element method. was applied to calculation of the tides and tidal currents of four major tidal constituents($M_2, ;S_2, ;K_1, ;O_1$) in the southern part of the East Sea. The model results were compared with the observed data and with the existing tidal charts. and the computed results showed good agreement with the observation. As a result, the detailed tidal charts for four major tidal constituents and the tidal current ellipses of the M$_2$and $K_1$tides were produced respectively. The results indicate that the amphidromic point of diurnal tide locates near Korean coastal lines closer than that of the chart drawn by Nishida(1980).

  • PDF

Preliminary Estimation of Barrier Effects on Tides in Saemanguem Area (새만금해역 방조제건설이 조석에 미치는 경향-초기평가)

  • 최병호;강용덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.34-42
    • /
    • 1990
  • The tides in the Saemanguem Area, the western coast of Korea have been examined based on simulations with barotropic depth-integrated model. As a first step tidal computations were performed with open-boundary sea level forcing from four major constitutents ($M_2$, $S_2$, $K_1$, and $O_1$). Subsequently the established model was utilized to investigate the effect of construction of tidal barriers for Saemanguem development plan on the existing tidal regime. It has been shown that tide of semi-diurnal constituents may be reduced to 2-7 cm in amplitude along the frontal area of proposed barrier. In connection with above changes the tidal current regime may be subjected to significant reduction in intensity. thus suggesting the high possibility of sedimentation along the frontal region of tidal barrier.

  • PDF

Modelling of Tides in the Bay of Bengal (벵갈만의 조석)

  • 최병호;고진석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.290-297
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with higher precision to marginal seas, it is necessary to improve correction procedures fer tidal signals in altimetry with more accurate tidal model than the well-known model of Schwiderski. The Bay of Bengal renders many conspicuous coastal oceanographic issues including tide and storm surge interactions along the upper Bangladesh coast. As a first step. tidal regime of semidiurmal tides (M$_2$, S$_2$, $N_2$, $K_2$) and diurnal tides (K$_1$, $O_1$, P$_1$) are computed with a model having a mesh resolution of 1/4 degree over the whole Bay of Bengal. Computed results are discussed with observation and previous Schwideski's tidal map of the region.

  • PDF

Structures and Variability of the T-S field and the Current across the Korea Strait (대한해협 횡단면 상의 수온-염분과 해류의 구조 및 변동)

  • RO, YOUNG JAE;PARK, MOON-JIN;LEE, SANG-RYONG;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.237-249
    • /
    • 1995
  • To understand the cross-sectional structures of temperature, salinity and current across the Korea Strait, field measurements were carried out for the period of May 2 to 20, 1994. Using the R/V Tam Yang, detailed CTD profiles and ADCP records were obtained and used to examine the mean and variability field on two time scales (15 days and 25 hours). A sharp coastal front in the middle of the Korea Strait exists across which two different water masses, i.e., warm and saline water in the eastern side and cold and less saline water in the western side are neighboring. We observed highly variable field of T and S apparently caused by the westward movement of warm and saline water mass. Short-term fluctuations of T and S in the middle layer are remarkable and their importance was analysed as the first Eigen mode accounting for more than 50% of total variances. The currents in th Korea Strait are strongly influenced by tidal currents with spring and neap variation whose maximum speed ranges 80-90 and 60-70 cm/s respectively near the central portion of the channel. Strong southward tidal current could even mask the Tsushima Current completely. Results of harmonic analysis show that the magnitudes of semidiurnal, diurnal and mean components of currents are comparable to each other at spring and neap tide conditions. The volume transport across the western channel of the Korea Strait were estimated to be 2.1 Sv at neap tide condition and 3.4 Sv at spring tide condition.

  • PDF

Variations of Temperature and Salinity in Kugum Suro Channel (거금수로 해역의 수온과 염분의 변동)

  • CHOO Hyo-Sang;LEE Gyu-Hyong;YOON Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Temperature and salinity were observed in Kugum Suro Channel in February, April, August and October 1993. Temperature ranged from $7.0^{\circ}C\;to\;25.0^{\circ}C$ throughout the year and its variation was about $18^{\circ}C$. The maximum temperature difference between surface and bottom was less than $0.75^{\circ}C$ for a year, which meant that the temperature stratification in Kugum Suro Channel was considerably week. Salinity had also a small variation range of less than $0.5\%_{\circ}$. Salinity varied from $34.0\%_{\circ}$ in April to $30.0\%_{\circ}$ in August and its fluctuation patterns were quite similar to the seasonal variations of the precipitation and the duration of sunshine observed at Kohung Weather station. Seasonal variation of sea water density in T-S diagram showed that the water mass in Kugum Suro Channel could be largely affected by regional atmospheric conditions. Temperature increased in ebb tide and decreased in flood tide, but salinity decreased in ebb tide and increased in flood tide for a day. The period of fluctuations in temperature and salinity measured for 25 hours was nearly coincident with the semi-diurnal tide which was predominant in that region. Stratification parameters computed in Kugum Suro Channel areas were less than $4.0J/m^3$ the year round, which indicated that vortical mixing from the bottom boundary caused by tidal current played an important role in deciding the stratification regime in Kugum Suro Channel. In estimating the equation which defines stratification and mixing effects in the observed areas, the tidal mixing term ranged from $4.7J/M^3\;to\;14.1J/m^3$ was greater than any other terms like solar radiation, river discharge and wind mixing.

  • PDF