• 제목/요약/키워드: disturbance power

Search Result 717, Processing Time 0.031 seconds

A Study on the Control of Multi-Input Hydraulic System for Robot Leg using LQR Technique (LQR 기법을 이용한 로봇다리의 다중입력 유압시스템 제어에 관한 연구)

  • Yoo, Sam-Hyeon;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.540-547
    • /
    • 2009
  • In the near future, military robots are likely to be substituted for military personnel in the field of battle. The power system of a legged robot is considerably more complex than the one used for a land vehicle because of the coordination and stability issues due to the large number of degree of freedom. In this paper, a servovalve-piston combination system for a straight-line motion of robot leg is modeled as three degree of freedom based on double inputs and single output transfer function. The output is the displacement of piston from neutral. The inputs are valve displacement from neutral and arbitrary load force in this system. LQR(Linear Quadratic Regulator) technique is applied in order to achieve robust stability and fast responses of the system. The Kalman filter loop, rejection of disturbance and noise, riccati equation, filter gain matrix, and frequency domain equality are analyzed and designed.

Survey of Nonlinear Control Methods to Permanent Magnet Stepping Motors (스테퍼 모터를 위한 비선형 제어기법의 개관)

  • Kim, Wonhee;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.323-332
    • /
    • 2014
  • Stepper motor is widely used in positioning applications due to its durability and high torque to inertia ratio as well as low cost and ability to be easily controlled with open-loop. Due to increased resolution of position control and improved stability of motion control, microstepping has drawn attention in industry since it was introduced in 1970s. With the increase in computational power and decrease in cost of embedded processors in recent years, drives and control systems for stepper motors have become more sophisticate than ever. Thus, closed-loop control methods have been developed to improve the performance of the stepper motors. In this paper, we review not only basic principles of conventional control methods used for stepper motors but also that of microstepping control. In addition, we surveyed recent development in nonlinear control methods applied to stepper motors. The nonlinear control methods are presented in the view of Lyapunov stability. Nonlinear torque disturbance observer, sliding mode control, and nonlinear phase compensation are also presented.

The Evaluation of Communication Distance Using Wireless MEMS Sensor in Building Structure (건축구조물에서 무선 MEMS 센서를 이용한 통신 거리 유효성 평가)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2017
  • Wireless MEMS sensors have common features such as wireless communication, data measurement, embedded processing, battery-based self-power, and low cost, and increased measurement effectiveness. Wireless MEMS sensors enable efficient SHM without interfering with location because there is no requirement for triboelectric noise and cumbersome cables. However, there is little research on the communication distance with sensors and data. For instance, existing researches have limited communication distance experiments in civil engineering bridges. It is also necessary to investigate the characteristics of dynamic behavior and the communication distance of architectural structures with different wireless transmission/reception environments. Therefore, in a building structure with walls and slabs instead of open spaces, MEMS sensors and data loggers were used as distance experiments where communication disturbance between the vertical slab and the horizontal wall could actually be communicated.

A Cost-Effective, Single-Phase Line-Interactive UPS System that Eliminates Inrush Current Phenomenon for Transformer-Coupled Loads

  • Bukhari, Syed Sabir Hussain;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.675-682
    • /
    • 2016
  • Sudden voltage drops and outages frequently disturb the operation of sensitive loads for domestic, commercial, and industrial use. In some cases, these events may even impair the functioning of relevant equipment. To maintain power under such conditions, a UPS system is usually installed. Once a disturbance happens at the grid side, the line-interactive UPS system takes over the load to prevent an interruption. But, due to magnetic saturation of the transformer, a significant inrush current may occur for the transformer-coupled loads during this transition. The generation of such transient currents may in turn decrease the line voltage and activates over-current protecting devices of the system. In this work, a cost-effective, line-interactive UPS system is proposed that eliminates the inrush current phenomenon associated with transformer-coupled loads. The strategy was implemented by connecting a standard current-regulated voltage source inverter (CRVSI) to the secondary winding of the load transformer. During any transient condition at the grid side, the load current is monitored and regulated to achieve either seamless compensation of the load current or complete transferal of load from grid to the inverter. Experimental results were obtained for a prototype under all possible operating conditions so as to validate the performance of the proposed topology.

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

A Method for Slow Component Velocity Measurement of Nystagmus Eye Movements using RLSM (RLSM을 이용한 안구운동의 저속도 측정방법에 대한 연구)

  • Kim Gyu-Gyeom;Ko Jong-Sun;Park Byung-Rim
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.455-458
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Especially, vestibular system has a very important function that controls the eye movement through vestibuloocular reflex and contraction of skeletal muscles through vestibulospinal reflex. However, postural disturbance caused by loss of vestibular function results in nausea, vomiting, vertigo and loss of craving for life. Lose of vestibular function leads to abnormal reflex of eye movements named nystagmus. Analysis of the nystagmus is needed to diagnose the vertigo, which is performed by means of electronystagmography (ENG). The purpose of this study is to develop a computerized system for data processing and an algorithm for the automatic evaluation of the slow component velocity (SCV) of nystagmus Induced by optokinetic(OKN) stimulation system. A new algorithm using recursive least square method (RLSM) to detect SCV of nystagmus is suggested in this paper. This method allows a fast and precise evaluation of the nystagmus, through artifact rejection techniques. The results are depicted in this paper.

  • PDF

Anti-Slip Control By Adhesion Effort Estimation Of Minimized Railway Vehicle (축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • Jeon K.Y.;Lee S.H.;Kang S.W.;Oh B.H.;Lee H.G.;Kim Y.J.;Han K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.536-539
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

Acoustic-Resonance Reduction of Metal Halide Lamps Using Amplitude Modulation (진폭변조에 의한 메탈핼라이드 램프의 음향공명 감소)

  • 이치환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.43-49
    • /
    • 2000
  • In this paper, a new control method is presented to reduce acoustic resonance phenomena of metal halide lamps with electronic ballasts. A behavior of frequency controlled resonant inverter is analyzed and the transfer function is obtained. An integrator as a current controller for ballast is employed. By using both a disturbance of the lamp power and spread spectrum effects for reducing acoustic resonance, an amplitude modulation is done by using the current controller with 200[Hz] sinusoidal wave. Arc stabilities of MH 250[W] lamps are studied with changing the modulation index. Experiments with two MH 250[W] lamps, made by different manufacturers, showed the validity of the proposed method.

  • PDF

A Development of Intelligent Robust Precision Control System for Power Conversion System using AI (첨단 AI 기법을 이용한 전력 변환기의 고성능 제어기 개발)

  • Ko, Jong-Sun;Lee, Yong-Jae;Kim, Kyu-Gyeom;Han, Hoo-Sek
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.92-95
    • /
    • 2001
  • This study presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM fellows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF