• Title/Summary/Keyword: disturbance observer$H_{\infty}$ control

Search Result 21, Processing Time 0.027 seconds

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_{\infty}$ Framework

  • Choi, Jong-Hwan;Kim, Seung-Soo;Cho, Hyun-Cheol;Ahn, Tae-Kyu;Duoc, Buiquang;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-557
    • /
    • 2004
  • This paper presents a disturbance observer based on an $H_{\infty}$ controller synthesis for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, the hydraulic excavator has more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_{\infty}$ frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

  • PDF

Teleoperation Controller Design for an Underwater Manipulator Using an $H_{\infty}$ Control Scheme Based on Disturbance Observer (외란관측기를 바탕으로 $H_{\infty}$제어 방법을 이용한 수중 로봇 팔의 원격조종 제어기 설계)

  • Ryu, Jee-Hwan;Kwon, Dong-Soo;Lee, Pan-Moon;Hong, Seok-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.578-585
    • /
    • 2000
  • This paper presents a robust and systematic bilateral controller design method for a teleoperation of an underwater manipulator. Disturbance observer is used as a local controller of the master and underwater slave manipulator to set up the teleoperation system as a nominal model by compensating coupled nonlinear terms model uncertainties and external disturbances in the water. Using the linearized master/slave model a $H_{\infty}$ optimal control scheme is applied to systematically construct a force reflecting bilateral controller.

  • PDF

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

Design of Disturbance Observer Using Robust Control Method for SPM-based Data Storage Systems (SPM-based Data Storage 시스템을 위한 강인 제어 시스템 설계 방식을 이용한 외란 관측 제어기 설계)

  • Moon, Jun;Lee, Choong-Woo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.160-167
    • /
    • 2009
  • In this paper, we apply the robust disturbance observer (DOB) to a SPM-based data storage (SDS) system. In the SDS system, coupling dynamics and parameter uncertainties are obstacles to the precision tracking control. Although the DOB is known to be an effective method to reject disturbances, there has been no systematic design approach to how to design DOB parameters. In this paper, the robust DOB is formulated based on the robust stabilization of normalized coprime factor plant description and the $H{\infty}$ loop shaping method. From the simulation and experimental results. the improved robustness and performance are obtained by the proposed robust DOB.

Observer-based H Fuzzy Controller Design of Interval Type-2 Takagi-Sugeno Fuzzy Systems Under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 관측기 기반 구간 2형 T-S 퍼지 시스템의 H 퍼지 제어기 설계)

  • Hwang, Sounghwan;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1620-1627
    • /
    • 2017
  • In this paper, we design an observer-based $H_{\infty}$ fuzzy controller for interval type-2 Takagi-Sugeno (T-S) fuzzy systems under imperfect premise matching. The designed observer-based controller can effectively estimate the state of the system and make fuzzy system satisfy the $H_{\infty}$ disturbance attenuation performance. Using the slack matrix, the derived stabilization condition is expressed in terms of a linear matrix inequality. Finally, the effectiveness of the proposed method is verified through a simulation example.

Robust and High Performance Control for Optical Disk Drive Systems Using Error based Disturbance Observer

  • Kwangjin Yang;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.2-34
    • /
    • 2001
  • There are many control methods guaranteeing the robustness of systems. Among them, H$\infty$ control, sliding mode control and disturbance observer have been used widely. Especially, disturbance observer(DOB) is one of the most popular methods because it is easy to apply and the cost to pay is low due to its simplicity. Conventional DOB utilizes output signal as a feedback signal. But in Optical Disk Drive(ODD) systems, the Position Error Signal(PES) is the only available one. So conventional DOB is not applicable. If we use error signal in stead of output signal, another form of DOB is made. We call it as Error based Disturbance Observer(EDOB). We show in this paper the difference between two systems, namely conventional DOB system and the EDOB system, and also show the effectiveness of EDOB through experiment.

  • PDF

ℋ_/ℋ Fault Detection and Isolation for Discrete-Time Delayed Systems (이산시간 상태지연 시스템을 위한 ℋ_/ℋ 고장검출 및 분리)

  • Jee, Sung-Chul;Lee, Ho-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.960-966
    • /
    • 2011
  • In this paper, an $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ fault detection and isolation (FDI) observer design problem is investigated for discrete-time delayed systems. To that end, a bank consisting of the sensor's number of observers is introduced. Each residual should be sensitive to a certain partial group of faults, but robust against the disturbance as far as possible. We formulate this multiobjective FDI problem as $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ observers design problem. Sufficient design condition is expressed as iterative linear matrix inequalities. The fault is then detected and isolated by evaluating the residuals through an FDI decision logic. A computer simulation is provided for verification of the proposed technique.