• Title/Summary/Keyword: distribution-free method

Search Result 561, Processing Time 0.026 seconds

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.

Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method

  • Khayat, Majid;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Baghlani, Abdolhossein
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this study, the semi-analytical finite strip method is adopted to examine the free vibration of cylindrical shells made up of functionally graded material. The properties of functionally graded shells are assumed to be temperature-dependent and vary continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of ceramic and metal. The material properties of the shells and stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with first-order shear deformation theory which accounts for through thickness shear flexibility are employed. The finite strip method is applied to five different shell theories, namely, Donnell, Reissner, Sanders, Novozhilov, and Teng. The approximate procedure is compared favorably with three-dimensional finite elements. Finally, a detailed numerical study is carried out to bring out the effects of power-law index of the functional graded material, stiffeners, and geometry of the shells on the difference between various shell theories. Finally, the importance of choosing the shell theory in simulating the functionally graded cylindrical shells is addressed.

The Size Distribution of Free Water Paths in Heartwood of Softwood by Centrifugal Method - The Difference between Earlywood and Latewood - (원심법에 의한 침엽수 심재부 유효수분이동경로의 반경분포 - 조재와 만재의 비교 -)

  • Park, Jong Su;Chun, Su Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.61-70
    • /
    • 2003
  • The size distribution of the free water paths between earlywood and latewood for six species in the heartwood of softwoods was estimated from the amount of dehydrated free water under various centrifugal fields, such as 2,200, 3,300, 4,800 and 6,900 rpm. The centrifugal method is based on the concept that water movement occurs by the balance of centrifugal force and water potential by meniscus. Water stops where the pressure differential is zero. In the centrifugal field, only two factors affect water movement in wood, that is, centrifugal force and water potential. Also, the water permeability was evaluated from the relationship between the water saturation ratio after the centrifugal treatment and the measure of water potential in specimen. The results showed that Cryptpmeria japonica had clear peaks at 0.70 ㎛ in earlywood and at 0.50 ㎛ in latewood. Tsuga sieboldii and Larix kaemferi had peaks at 0.50 and 0.30 ㎛ in both earlywood and latewood, respectively. Abies firma showed peaks at 0.70 ㎛ in earlywood and at 0.30 ㎛ in latewood. The water permeability of earlywood was higer than that of latewood for all softwoods except Pseudotsuga menziesii.

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.519-531
    • /
    • 2017
  • We consider goodness-of-fit test statistics for Weibull distributions when data are randomly censored and the parameters are unknown. Koziol and Green (Biometrika, 63, 465-474, 1976) proposed the $Cram\acute{e}r$-von Mises statistic's randomly censored version for a simple hypothesis based on the Kaplan-Meier product limit of the distribution function. We apply their idea to the other statistics based on the empirical distribution function such as the Kolmogorov-Smirnov and Liao and Shimokawa (Journal of Statistical Computation and Simulation, 64, 23-48, 1999) statistics. The latter is a hybrid of the Kolmogorov-Smirnov, $Cram\acute{e}r$-von Mises, and Anderson-Darling statistics. These statistics as well as the Koziol-Green statistic are considered as test statistics for randomly censored Weibull distributions with estimated parameters. The null distributions depend on the estimation method since the test statistics are not distribution free when the parameters are estimated. Maximum likelihood estimation and the graphical plotting method with the least squares are considered for parameter estimation. A simulation study enables the Liao-Shimokawa statistic to show a relatively high power in many alternatives; however, the null distribution heavily depends on the parameter estimation. Meanwhile, the Koziol-Green statistic provides moderate power and the null distribution does not significantly change upon the parameter estimation.

A Comparative Study on the Energy Metabolism of Brains of Several Vertebtrates with Respect to Their Phyogeny (척추동물 뇌조직의 Energy 대사에 관한 계통학적 비교연구)

  • 박상윤
    • The Korean Journal of Zoology
    • /
    • v.7 no.2
    • /
    • pp.25-36
    • /
    • 1964
  • The present paper deals with the comparative study on phylogenic difference in the patterns of energy metabolism of brain slices of several vertebrate species by measuring oxygen consumptionwith glucose-6-phosphate, glucose-1-phosphate, glyceraldehyde-3-phosphate or glutamate as respiratory substrate employing Warburg's manometric method, by determination of the utilization rate of glucose using glucose-1-C14 by analyzing patterns of free amino acid distribution , and by histochemical determination using glucose-1-C14 by analyzing patterns of free amino acid distribution acid distribution , and by histochemical determination of glycogen contents. 1. Glucose enhances the oxygen consumption of brain slices of animals belinging to reptile, aves and mammalia while it shows a tendency to decrease that of animals belonging to pisces and amphibia. 2. Glucose-6--phosphate increase oxygen consumption more than glucose in every species examined, while glucose-1-phosphate and glyceraldehyde-3-phosphate increase that of Rana nigromaculata only . In general m, it appears that phosphosugars are more effective as a respiratory substrate to those species which have less endogenous respiration than to those having larger endogenous respiration. 3. Similar patterns of free amino acid distribution and the relative amount are found among the species and in every species examined glutamic acid is detected in the larges amount . ${\gamma}$-Amino butyric acid, glycine, alanine and aspartic acid are found in every species. 4. Ophicephalus showed less oxygen consumption than endogenous respiration when glutamate was added to the medium. When sodium fluoride was added, the oxygen consumption was some what increased . Such phenomenon wasnot found in the frog. 5. The result of histochemcial analysis of the brain showed that glycogen was abundantly present in the fish , amphibia , and especially in the reptile and that no distinctive grains of glycogen were found in the bird and mammal . From these facts, it may be supposed that anaerobic glycolysis as energy source dominates in fish and amphibia and aerobic respiration through the oxidation of glucose dominates in bird and mamal , the reptile occupying transitional position between these two categories. The way of obtaining energy for brain activity by the oxidation of glucose supplied from the circulating blood is seemed to be first acquired by reptile and the function is completed both in aves and mammal.

  • PDF

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.