• Title/Summary/Keyword: distribution of moisture content

Search Result 285, Processing Time 0.04 seconds

Non-destructive quality prediction of domestic, commercial red pepper powder using hyperspectral imaging

  • Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.224-234
    • /
    • 2023
  • We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.

Physical Properties Analysis for Automated Process Design of Solar Salts (천일염 자동화 공정설계를 위한 물리적특성 분석)

  • Kim, Hoon;Kim, Woong;Lee, Hyo-Jae;Han, Jae-Woong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.408-413
    • /
    • 2018
  • In this paper, the particle size, bulk density, friction coefficient and angle of repose were measured for the automatic processing of solar salt, which was classified with 5 levels of moisture content (16.5, 13.2, 8.2, 4.9, 3.7%). Average diameter was 1.98~1.60mm according to moisture content, and bulk density increased with increasing moisture content. As a result of measuring the coefficient of dynamic friction, the maximum value was shown in the stainless steel plate according to the material, and ABS plate and acrylic plate were lower in the order. Movement occurred at the moisture content of 8.2% or less, and the empty angle of repose was increased and the filling angle of repose was decreased as the moisture content increased.

Numerical Simulations of the Moisture Movement in Unsaturated Bentonite Under a Thermal Gradient

  • Park, J.W.;K. Chang;Kim, C.L.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • The one-dimensional finite element program was developed to analyze the coupled behavior of heat, moisture, and air transfer in unsaturated porous media. By using this program, the simulation results were compared with those from the laboratory infiltration tests under isothermal condition and temperature gradient condition, respectively. The discrepancy of water uptake was found in the upper region of a bentonite sample under isothermal condition between numerical simulation and laboratory experiment. This indicated that air pressure was built up in the bentonite sample which could retard the infiltration velocity of liquid. In order to consider the swelling phenomena of compacted bentonite which cause the discrepancy of the distribution of water content and temperature, swelling and shrinkage factors were incorporated into the finite element formulation. It was found that these factors could be effective to represent the moisture diffusivity and unsaturated hydraulic conductivity due to volume change of bentonite sample.

  • PDF

Moisture Diffusion and Self-desiccation of Concrete at Early Ages (초기재령 콘크리트의 수분확산과 자체건조에 관한 연구)

  • 김진근;이칠성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.303-308
    • /
    • 1998
  • In the concrete structures exposed to environmental conditions at early ages, water movement occurs by moisture diffusion in the concrete, and self-desiccation of concrete is also occurred. Thus the internal relative humidity is changed from moisture diffusion and self-desiccation. Thus the internal relative humidity at each location in concrete includes the decrease by self-desiccation. Especially, for high-strength concrete the much unit cement content is used, so that the non-uniform relative humidity distribution is affected form self-desiccation at early ages. In this study, the internal relative humidity in concrete was measured at early ages, and the moisture diffusion component and self-desiccation component of total relative humidity were discussed.

  • PDF

Comparison of Drying Characteristics of Square Timber by Heated Platen and Radio-frequency/Vacuum Drying (큰 정각재의 가열판과 고주파 진공건조간 건조특성의 비교)

  • Jung, Hee-Suk;Kang, Wook;Lee, ChuI-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • Red pine(Pinus densiflora) square timbers with 14.0 cm and 16.5 cm of face size and 24 m long were dried in a vacuum-press kiln and in a radio-frequency/vacuum(RF/V) kiln to compare drying rate, moisture content(MC) distribution and specific energy. RF/V drying rate was higher than vacuum-press drying rate. The effect of size of cross section on the RF/V drying rates were more pronounced than those of vacuum-press drying. The longitudinal- and the transverse MC distribution of dried square timber showed convex profile for the vacuum-press drying and concave profile for the RF/V drying. Moisture gradient of width direction was similar to the thickness direction in vacuum-press dried square timber and was more slight than that of the thickness direction in the RF/V dried large square timber. The specific energy consumption curve increased as MC decreased. Specific energy(kWh/kg of water evaporated) of the vacuum-press process required more than that of the RF/V process.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Moisture Content Change of Korean Red Pine Logs During Air Drying: II. Prediction of Moisture Content Change of Korean Red Pine Logs under Different Air Drying Conditions (소나무 원목의 천연건조 중 함수율 변화: II. 소나무 원목의 천연건조 중 함수율 변화 예측)

  • HAN, Yeonjung;CHANG, Yoon-Seong;EOM, Chang-Deuk;LEE, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.732-750
    • /
    • 2019
  • Air drying was carried out on 15 Korean red pine logs to provide a prediction model of the moisture content (MC) change in the wood during drying. The final MC was 17.4% after 880 days since the beginning of air drying in the summer for 6 Korean red pine logs with 68.7% initial MC. The final MC was 16.0% after 760 days since the beginning of air drying in the winter for 9 Korean red pine logs with 35.8% initial MC. A regression model with R-squared of 0.925 was obtained as a result of multiple regression analyses with initial MC, top diameter, temperature, relative humidity, and wind speed as independent variable and and MC change during air drying as dependent variable. The initial MC and top diameter, which is the characteristic of Korean red pine, have greater effect on the MC decrease during air drying compared to meteorological factors such as the temperature, relative humidity, and wind speed. Two-dimensional mass transfer analysis was performed to predict the MC distribution of Korean red pine logs during air drying. Two prediction models with different air drying days and different meteorological factors for the determination of the diffusion coefficient and surface emission coefficient were presented. The error between the different two methods ranged from 0.1 to 0.8% and the difference from the measured value ranged from 2.2 to 3.6%. By measuring the internal MC during air drying of Korean pine logs with various initial MC and diameter, and calculating the moisture transfer coefficient in wood for each meteorological condition, the error of the prediction model can be reduced.

On the Population Dynamics and Interspecific Competition of Disporum smilacinum and D. viridescens (Liliaceae) in Mt. Nam Park (남산공원 내 애기나리와 큰애기나리 군락의 동태 및 종간 경쟁의 추정)

  • 민병미
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.649-663
    • /
    • 1998
  • The clarify the ecological properties, and to predict change of understory vegetation of mt. Nam Park, population dynamics and interspecific competition of D. smilacinum and D. viridescens, which grow in understory of deciduous broad-leaved forest and pseudo-annuals, were studied from May 20 to May 30 1998. The depth of litter layer, soil moisture content, soil organic matter and soil texture were surveyed in 18 populations (15 D. smilacinum populations and 3 D. viridescens populations). Mean litter layer of d. smilacimum population was thinner than that of D. viridescens populations). Mean litter layer of D. smilacnum population was thinner than that of D. viridescens population. The contents of soil moisture and organic matter of D. smilacinum population were lower than that of D. viridescens population. The D. smilacinum growed in broad range of soil texture but D. viridescens in loamy soil. Because D. smilacinum could tolerate more broad range of soil moisture and soil texture than D. viridescens, the former covered the herb layer in earlier stage and the latter introduced in later stage when rhizome could grow easily. The numbers of individual in two marginal parts were smaller than that in center in same D. smilacinum patch. And the total numbers of individuals grown in (10 ${\times}$ 10)cm were from 0 to 12. The rhizome (subterranean runner) weight, rhizome length, root weight, shoot weight, lea weight and leaf number per subquadrat (cell) increased along the number of individual, that is, increased from marginal part to center. But rhizome weight and rhizome length per individual were vice versa. Therefore, the individuals in marginal part reproduced longer and stronger asexual propagules than that in center. The distribution pattern of D. smilacinum was contageous and that of D. viridescens was random or regular. Therefore, population growth of former was independent on density and that of latter was dependent on density. The distributions of size-class showed normal curves in two population, but the curves based on data of total dry weight showed positive skewness and those of leaf number showed negative skewness The correlation coefficient (CC) values between the properties of each organ were high in two population and significant at 0.1% level. The CC values of D. viridescens were higher of the two. Therefore, the former allocated the energy to each organ stable. The rhizome depth of d. viridescens was 2 times deeper than that of D. smilacinum. And rhizome length and weight of D. viridescens were longer (2 times) or heavier (4 times) than those of D. smilacinum. The patch size of D. viridescens increased 60 cm per year and that of D. smilacinum 30 cm. On this results, the intrinsic increase velocity of d. viridescens patch was 2 times faster than that of d. smilacinum, therefore, on the competition, the former had an advantage over D. smilacinum. The reason why d. viridescens defeated D. smilacinum resulted from that the leaf area of former was 4 times broader than that of latter. in Mt. Nam Park, it was thought that two disporum Population would change with the 3 thpes of environmental change as followings. First, no human impact and increase of soil moisture content resulted in increase of D. viridescens population. Second, mild human impact and similar condition of soil moisture content resulted in slow increase or no changes of D. smilacinum and d. viridescens population. Third, severe human impact and dry condition resulted in decrease or vanishment of two disporum populations.

  • PDF

Studies on the Engineering Characteristics of Alluvial Clayey Deposits in the Bay Area of Asan (II) (아산만지역 충적점토의 토질특성에 관한 연구(II))

  • 유능환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.55-66
    • /
    • 1988
  • This study was conducted to investigate the various engineering properties and correlationshops among the soil constants of alluvial clayey deposits distributed in the bay of Asan and their results are summarized as follows : 1. Grain size distribution of soil was consisted of 12 % of clay, 46-73 % of silt, 2-23 % of sand, and as for the consistency characteristics, 26-36 % of liquid limit, 18-21 % of plastic limit and 6-16 % of plastic index, and so the soil belonging to as a lower plastic nonorganic clay, it's specific gravity was 2,66-2.70, and the location on the plastic chart was approximately above the A-line. Z The natural moisture content and unit weight were 30-43 % and 1.76-1.87 g I cm$_3$, respectively, and according to increment of natural moisture content, the unit weight was decreased, and the initial void ratio and degree of saturation were shown of 0,87-1119 and 92- 100 %, most of saturated. 3. Cone resistance value which was shown 2.4 - 6.5 kg / $cm^2$ was a little lower and it was increased with the depth of layer and shown the formular $q_c=0.7_z+1.32$. 4. Unconfined compression strength was about 0.18-0.43kg /$cm^2$, cu, 0.1-0.22kg / $\psi$, $2-6^{\circ}$ under uu-test condition of triaxial, and CCU, 0.08-0.3 kg/cm , $\psi$, $12-18^{\circ}$ under the condition of cu-test. 5. Pre-consolidation load of characteristics of consolidation was 0.4-0.8 kg / $cm^2$, compression index, about 0.17-0.33. 6. Liquid limit and plastic index were incresased with the increment of clay content but most of alluvial clay was appeared as a normal through non-activity clay soil shown more natural moisture content than liquid limit, and their relationship as follows : LL=0.38( cy+54.8), PI=0.836(LL -17.8), PI =0.468(LL -0.48) 7. The initial void ratio presented correlationship of positive among clay content, natural moisture content and liquid limit, and that of reverse with unit weight, and their results as follws : $e_o=0.024(w_n+0.2)$, $e_o=e_o=0.0003c_y+0.0005 LL+0.0151 W_n+\frac{3.58}{r-t}-1.52$ 8. It was shown that the compression index has correlationship of postive among the clay content, liquid limit, plastic index, natural moisture content and initial void ratio, and their relationships as follows ; $c_c=0.44(e_o-0.47)$, $c_c=0.001$

  • PDF