• Title/Summary/Keyword: distributed-armature

Search Result 10, Processing Time 0.023 seconds

Optimal Design for Thrust Ripple Reduction of Stationary Distributed-Armature System

  • Park, Eui-Jong;Jung, Sang-Yong;Cho, Kyoung-Pil;Kim, Yong-Jae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.72-77
    • /
    • 2016
  • Although the initial cost of permanent-magnet linear synchronous motors is high owing to the installation of armatures over the full length of the transportation lines, linear motors are useful for transportation systems because of their high speed, acceleration, and deceleration. For these reasons, research into reducing the cost of linear motors is necessary, and a stationary distributed-armature system has been suggested for installing armatures in sections where acceleration and deceleration of the mover are required. However, each armature has ends that significantly increase the cogging force, resulting in the increase in the thrust ripple of the mover. Therefore, in order to improve the thrust ripple of the system, the present study aims to provide auxiliary teeth on both ends of the armature to achieve an optimal design through an analysis of the contribution ratio with respect to factors regarding the design of the experiment and the objective function.

Current Distribution and Effective Resistance in the Rail of a Distributed-type Railgun (분포형 레일건 레일에서의 전류분포 및 실효저항)

  • 임달호;구태만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.694-701
    • /
    • 1988
  • Distributed-type railguns are designed to maintain the armature current and the length between the armature and the current-feed region nearly constant with time. This paper deals with factors affecting current distribution, effective resistance and effective skin depth in the rail of a distributed-type railgun. Analytical solutions for the current distributions and resistance in the rail are presented for a simple two-dimensional model under steady-state contions. For diffusion limited current, it is found that effective rail resistance is proportional to the square root of the relative velocity, the permeability of the rail and the length between the armature and that effective skin depth of the rail is proportional to the square root of the length and inversely proportional to the square root of the permeability, the conductivity and the velocity.

Improved Method for Calculating Armature-Reaction Field of Surface-Mounted Permanent Magnet Machines Accounting for Opening Slots

  • Zhou, Yu;Li, Huaishu;Wang, Qingyu;Xue, Zhiqiang;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1674-1681
    • /
    • 2015
  • This paper presented an improved analytical method for calculating armature-reaction field in the surface-mounted permanent magnet machines accounting for opening slots. The analytical model is divided into two types of subdomains. The current of the armature is centralized in the center of the slots. The field solution of each subdomain is obtained by applying the interface and boundary conditions of the model. Two 30-pole/36-slot prototype machines with different slot-opening width are used for validation. The FE (finite element) results confirm the validity of the analytical results with the proposed model. The investigation shows that the wider the slot-opening width is, the smaller the peak value of radial and circumferential components of flux density, and the analytical armature-reaction field produced by centralized current in the slots is similar with the armature-reaction field produced by distributed current in the slots in the FE.

A Design of Optimal Interval between Armatures in Long Distance Transportation PMLSM for End Cogging Force Reduction

  • Park, Eui-Jong;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.361-366
    • /
    • 2016
  • Although the permanent magnet linear synchronous motor is a motor useful for transportation systems thanks to its high speed, high acceleration and deceleration, the linear motor generally has armatures installed on the full length of the transport path. It results in the increase in material costs and manufacturing time. As a means to solve this problem a stationary discontinuous armature system is suggested. However, it involves the following two issues. The first issue is it is impossible to control the mover in the section where any armature is not installed as armatures are distributed. The second one is increasing cogging force due to the ends of the armatures. Therefore, this study aims to solve these problems by adjusting intervals between armatures to control the mover anywhere, and to design the interval between armatures optimally to minimize the end cogging force. The suitable distance was deduced. It addressed the problems and showed suitability for long distance transportation PMLSM.

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

The Design of End Edge Shape for Reduction of Long-Distance Transportation Stationary Discontinuous Armature PMLSM Thrust Ripple with Distributed Winding (장거리 반송용 전기자 분산배치 분포권 PMLSM의 추력맥동 저감을 위한 단부형상 설계)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1675-1680
    • /
    • 2013
  • Recently, the permanent magnet linear synchronous motor as low noise, high speed and high thrust force transportation system has been proposed but this motor causes an increase of material cost because of its characteristic arranging the armature on the full length of transportation lines when this system is applied to the long distance transportation system. Therefore, we suggested discontinuous arrangement method of the armature to solve this problem. However, Detent force which causes thrust force ripple generating noise, vibration and decline of performance is generated when a mover pass between the armatures. Thus, in this paper, we examined characteristic of detent force to reduce the end edge effect according to the end edge teeth's height and auxiliary teeth and suggested the shape that can the most reduce the detent force.

Finite Element Analysis of the Transient Characteristics of a Superconducting A.C. Generator (유한요소법에 의한 초전도교류 발전기의 과도 특성 해석)

  • 한성진;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.24-30
    • /
    • 1991
  • This paper deals with the analysis of the transient characteristics of a superconducting a.c. generator(SCG) using Finite Element Method. Since the magnetic field induced by the field current and the armature currents are not sinusoidally distributed in a generator, the conventional equivalent circuit method, in general, uses the fundamental component only and is done in frequency domain. But the finite element analysis makes it possible to analyze the transient magnetic field distribution and the electrical characteristics of the double shields of SCG in time domain.

  • PDF

A Research on Iron Loss of IPMSM with a Fractional Number of Slots Per Pole (분수슬롯 권선 타입의 매입형 영구자석 동기 전동기의 철손 분석)

  • Seo, Jang-Ho;Yi, Kyung-Pyo;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.50-52
    • /
    • 2008
  • In this paper, we investigated the iron losses in the rotor core of interior permanent magnet synchronous machine (IPMSM), which have distributed armature windings. From the analysis results, we can conclude that iron losses of rotor are definitely large at load condition if the number of slots per pole is fractional. Since the slot-pole combination may induce excessive heating, particular care should be necessary in design of PMSM for a high power rating application such as electric vehicles.

  • PDF

Characteristic Comparison of IPMSM according to Armature Winding (전기자 권선 방법에 따른 매입형 영구자석 동기 전동기의 특성 비교)

  • Park, Su-Beom;Kwon, Soon-O;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.785-786
    • /
    • 2006
  • Performance comparison of IPMSMs with distributed and concentrated winding is presented in this papcr. Two IPMSMs have been designed and fabricated with identical rotor dimension, air-gap length, series turn number, stator outer radius, and axial length except winding configuration. Basic parameters and machine performance, such as resistances, back emf, output torque, and efficiency, are compared. From the comparison results, motor design considering winding configuration is discussed.

  • PDF

A study of Induction Voltage Regulator Imporvement (동극 및 이극에 의한 유도전 압조정방식)

  • 오상세
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 1966
  • This voltage Regulator, which regulates voltage in different way from the conventional regulator, is constructed by circular-plate core type stators and controllers (are similar to rotor of conventional). The principle of this Voltage Regulator is based on the rotating magnetic field theory including peculiar homopolar and heteropolar concept. Comparing with the conventional induction regulator, this regulator need not to have short windings and can cancel armature reaction. Moreover, it is able to decrease the machine noise and control the phase of it freely. And it's efficiency can become more than 95% which almost the same as that of transformer's. By increasing numbers of cores of the same size, the output power can be increased, the insulation can be decreased and high Voltage can directly be connected because applied voltage is distributed to each core. This Voltage Regulator can be also used as a current regulator, a starter a induction motor and a phase transformer etc.

  • PDF