• Title/Summary/Keyword: distributed sensors

Search Result 408, Processing Time 0.026 seconds

On Generating Backbone Based on Energy and Connectivity for WSNs (무선 센서네트워크에서 노드의 에너지와 연결성을 고려한 클러스터 기반의 백본 생성 알고리즘)

  • Shin, In-Young;Kim, Moon-Seong;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Routing through a backbone, which is responsible for performing and managing multipoint communication, reduces the communication overhead and overall energy consumption in wireless sensor networks. However, the backbone nodes will need extra functionality and therefore consume more energy compared to the other nodes. The power consumption imbalance among sensor nodes may cause a network partition and failures where the transmission from some sensors to the sink node could be blocked. Hence optimal construction of the backbone is one of the pivotal problems in sensor network applications and can drastically affect the network's communication energy dissipation. In this paper a distributed algorithm is proposed to generate backbone trees through robust multi-hop clusters in wireless sensor networks. The main objective is to form a properly designed backbone through multi-hop clusters by considering energy level and degree of each node. Our improved cluster head selection method ensures that energy is consumed evenly among the nodes in the network, thereby increasing the network lifetime. Comprehensive computer simulations have indicated that the newly proposed scheme gives approximately 10.36% and 24.05% improvements in the performances related to the residual energy level and the degree of the cluster heads respectively and also prolongs the network lifetime.

  • PDF

A 3-D Vision Sensor Implementation on Multiple DSPs TMS320C31 (다중 TMS320C31 DSP를 사용한 3-D 비젼센서 Implementation)

  • Oksenhendler, V.;Bensrhair, Abdelaziz;Miche, Pierre;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.124-130
    • /
    • 1998
  • High-speed 3D vision systems are essential for autonomous robot or vehicle control applications. In our study, a stereo vision process has been developed. It consists of three steps : extraction of edges in right and left images, matching corresponding edges and calculation of the 3D map. This process is implemented in a VME 150/40 Imaging Technology vision system. It is a modular system composed by a display, an acquisition, a four Mbytes image frame memory, and three computational cards. Programmable accelerator computational modules are running at 40 MHz and are based on TMS320C31 DSP with a $64{\times}32$ bit instruction cache and two $1024{\times}32$ bit internal RAMs. Each is equipped with 512 Kbytes static RAM, 4 Mbytes image memory, 1 Mbytes flash EEPROM and a serial port. Data transfers and communications between modules are provided by three 8 bit global video bus, and three local configurable pipeline 8 bit video bus. The VME bus is dedicated to system management. Tasks between DSPs are distributed as follows: two DSPs are used to edges detection, one for the right image and the other for the left one. The last processor computes the matching process and the 3D calculation. With $512{\times}512$ pixels images, this sensor generates dense 3D maps at a rate of about 1 Hz depending of the scene complexity. Results can surely be improved by using a special suited multiprocessors cards.

  • PDF

A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence (인공지능 기반 온실 환경인자의 시간영역 추정)

  • Lee, JungKyu;Oh, JongWoo;Cho, YongJin;Lee, Donghoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.277-284
    • /
    • 2020
  • To increase the utilization of the intelligent methodology of smart farm management, estimation modeling techniques are required to assess prior examination of crops and environment changes in realtime. A mandatory environmental factor such as CO2 is challenging to establish a reliable estimation model in time domain accounted for indoor agricultural facilities where various correlated variables are highly coupled. Thus, this study was conducted to develop an artificial neural network for reducing time complexity by using environmental information distributed in adjacent areas from a time perspective as input and output variables as CO2. The environmental factors in the smart farm were continuously measured using measuring devices that integrated sensors through experiments. Modeling 1 predicted by the mean data of the experiment period and modeling 2 predicted by the day-to-day data were constructed to predict the correlation of CO2. Modeling 2 predicted by the previous day's data learning performed better than Modeling 1 predicted by the 60-day average value. Until 30 days, most of them showed a coefficient of determination between 0.70 and 0.88, and Model 2 was about 0.05 higher. However, after 30 days, the modeling coefficients of both models showed low values below 0.50. According to the modeling approach, comparing and analyzing the values of the determinants showed that data from adjacent time zones were relatively high performance at points requiring prediction rather than a fixed neural network model.

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.

Implementation of a DB-Based Virtual File System for Lightweight IoT Clouds (경량 사물 인터넷 클라우드를 위한 DB 기반 가상 파일 시스템 구현)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.311-322
    • /
    • 2014
  • IoT(Internet of Things) is a concept of connected internet pursuing direct access to devices or sensors in fused environment of personal, industrial and public area. In IoT environment, it is possible to access realtime data, and the data format and topology of devices are diverse. Also, there are bidirectional communications between users and devices to control actuators in IoT. In this point, IoT is different from the conventional internet in which data are produced by human desktops and gathered in server systems by way of one-sided simple internet communications. For the cloud or portal service of IoT, there should be a file management framework supporting systematic naming service and unified data access interface encompassing the variety of IoT things. This paper implements a DB-based virtual file system maintaining attributes of IoT things in a UNIX-styled file system view. Users who logged in the virtual shell are able to explore IoT things by navigating the virtual file system, and able to access IoT things directly via UNIX-styled file I O APIs. The implemented virtual file system is lightweight and flexible because it maintains only directory structure and descriptors for the distributed IoT things. The result of a test for the virtual shell primitives such as mkdir() or chdir() shows the smooth functionality of the virtual file system, Also, the exploring performance of the file system is better than that of Window file system in case of adopting a simple directory cache mechanism.

Development for Worker Safety Management System on the EOS Blockchain (EOS 블록체인 기반의 작업자 안전관리 시스템 개발)

  • Jo, Yeon-Jeong;Eom, Hyun-Min;Sim, Chae-Lin;Koo, Hyeong-Seo;Lee, Myung-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.10
    • /
    • pp.797-808
    • /
    • 2019
  • In a closed workplace, the management of the workplace is important because the environmental data at the workplace has a great influence on the safety of workers. Today's industrial sites are transformed into data-based factories that collect and analyze data through sensors in those sites, requiring a management system to ensure safety. In general, a safety management system stores and manages data on a central server associated with a database. Since such management system introduces high possibility of forgery and loss of data, workers often suspect the reliability of the information on the management system. In this paper, we present a worker safety management system based on the EOS blockchain which is considered as third-generation blockchain technology. The developed system consists of a set of smart contracts on the EOS blockchain and 3 decentralized applications associated with the blockchain. According to the roles of users, the worker and manager applications respectively perform the process of initiating or terminating tasks as blockchain transactions. The entire transaction history is distributed and stored in all nodes participating in the blockchain network, so forgery and loss of data is practically impossible. The system administrator application assigns the account rights of workers and managers appropriate for performing the functions, and specifies the safety standards of IoT data for ensuring workplace safety. The IoT data received from sensor platforms in workplaces and the information on initiation, termination or approval of tasks assigned to workers, are explicitly stored and managed in the EOS smart contracts.

A Study on the Vulnerability Management of Internet Connection Devices based on Internet-Wide Scan (인터넷 와이드 스캔 기술 기반 인터넷 연결 디바이스의 취약점 관리 구조 연구)

  • Kim, Taeeun;Jung, Yong Hoon;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.504-509
    • /
    • 2019
  • Recently, both wireless communications technology and the performance of small devices have developed exponentially, while the number of services using various types of Internet of Things (IoT) devices has also massively increased in line with the ongoing technological and environmental changes. Furthermore, ever more devices that were previously used in the offline environment-including small-size sensors and CCTV-are being connected to the Internet due to the huge increase in IoT services. However, many IoT devices are not equipped with security functions, and use vulnerable open source software as it is. In addition, conventional network equipment, such as switches and gateways, operates with vulnerabilities, because users tend not to update the equipment on a regular basis. Recently, the simple vulnerability of IoT devices has been exploited through the distributed denial of service (DDoS) from attackers creating a large number of botnets. This paper proposes a system that is capable of identifying Internet-connected devices quickly, analyzing and managing the vulnerability of such devices using Internet-wide scan technology. In addition, the vulnerability analysis rate of the proposed technology was verified through collected banner information. In the future, the company plans to automate and upgrade the proposed system so that it can be used as a technology to prevent cyber attacks.

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.