• Title/Summary/Keyword: distributed renewable energy generation

Search Result 148, Processing Time 0.027 seconds

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Jannati, Jamil;Yazdaninejadi, Amin;Talavat, Vahid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.

The Analysis on Power Development Options in Remote Islands and It's Implementation (도서지역 전원개발 대안분석 및 정책 개선방향)

  • Rhee Chang-Ho;Jo In-Seung
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.108-117
    • /
    • 2006
  • This paper focus on power development options for remote islands. Recently, in accordance with progress in distributed generation technologies including renewable energy sources, many options are possible as power development option for island. At first we estimate generation cost by generation technology then recommend and suggest some countermeasures and implementation for institutional improvement.

  • PDF

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

Developement for Pretreatment System of Distributed Power Generation by using Livestock BIO-ENERGY (축산폐기물 바이오 에너지 분산발전용 전처리시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu;Kim, Jae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.585-588
    • /
    • 2007
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPCO (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technolgies by using Swine BIO-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPCO also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF

The Power Brokerage Trading System for Efficient Management of Small-Scale Distributed Energy-Resources (소규모 분산에너지자원의 효율적인 관리를 위한 전력중개거래시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Lee, Woo;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.735-742
    • /
    • 2021
  • Recently, renewable energy-related power generation facilities have been surging due to the government's "Renewable Energy 3020", "Green New Deal", "2050 Carbon Neutrality" and "K-RE100" policies. Most renewable energy facilities are small and distributed, making it difficult to manage efficiently, and small distributed resources less than 1MW are having a hard time with participating in the market due to the limited sales and avoidance of trading. In particular, the intermittency of renewable energy has a significant impact on the stability of the power grid. The government is seeking to address volatility and intermittency issues through 'small distributed resource brokerage trading, and to expand the systematic resourceization and acceptability of heterogeneous large and small distributed resources. In this work, we intend to apply an AI-based power generation prediction model to a distributed resource brokerage trading system so that it can be utilized as a foundation platform for pioneering new energy business markets.

Development of Distributed Micro Gas Turbine(MGT) Technology by using Swine BID-ENERGY (축산폐기물 BIO-ENERGY를 이용한 분산형 마이크로 가스터빈 발전기술 개발)

  • Hur Kwang-beom;Park Jung-Keuk;Lee Jung-bin;Rhim Sang-gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-466
    • /
    • 2005
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPOD (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technologies by using Swine BID-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPOD also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF

A Study on Optimal Operation of Microgrid Considering the Probabilistic Characteristics of Renewable Energy Generation and Emissions Trading Scheme (신재생에너지발전의 확률적인 특성과 탄소배출권을 고려한 마이크로그리드 최적 운용)

  • Kim, Ji-Hoon;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • A microgrid can play a significant role for enlargement of renewable energy sources and emission reduction because it is a network of small, distributed electrical power generators operated as a collective unit. In this paper, an application of optimization method to economical operation of a microgrid is studied. The microgrid to be studied here is composed of distributed generation system(DGS), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems, wind power systems. Both of thermal loads and electrical loads are included here as loads. Also the emissions trading scheme to be applied in near future, the cost of unit start-up and the operational characteristics of battery systems are considered as well as the probabilistic characteristics of the renewable energy generation and load. A mathematical equation for optimal operation of this system is modeled based on the mixed integer programming. It is shown that this optimization methodology can be effectively used for economical operation of a microgrid by the case studies.

Review of Multifunctional Inverter Topologies and Control Schemes Used in Distributed Generation Systems

  • Teke, Ahmet;Latran, Mohammad Barghi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.324-340
    • /
    • 2014
  • Recent developments in power electronics technology have spurred interest in the use of renewable energy sources as distributed generation (DG) generators. The key component in DG generators is a grid-connected inverter that serves as an effective interface between the renewable energy source and the utility grid. The multifunctional inverter (MFI) is special type of grid-connected inverter that has elicited much attention in recent years. MFIs not only generate power for DGs but also provide increased functionality through improved power quality and voltage and reactive power support; thus, the capability of the auxiliary service for the utility grid is improved. This paper presents a comprehensive review of the various MFI system configurations for single-phase (two-wire) and three-phase (three- or four-wire) systems and control strategies for the compensation of different power quality problems. The advances in practical applications and recent research on MFIs are presented through a review of nearly 200 papers.