• 제목/요약/키워드: distributed parallel computing

Search Result 157, Processing Time 1.556 seconds

Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process (반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축)

  • Lee, Seung-Il;Kim, Yeon-Il;Lee, Sang-Gil;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.21-28
    • /
    • 2015
  • In the semi-conductor process, a simulation process is performed to detect defects by analyzing the behavior of the impurity through the physical quantity calculation of the inner element. In order to perform the simulation, Finite-Difference Time-Domain(FDTD) algorithm is used. The improvement of semiconductor which is composed of nanoscale elements, the size of simulation is getting bigger. Problems that a processor such as CPU or GPU cannot perform the simulation due to the massive size of matrix or a computer consist of multiple processors cannot handle a massive FDTD may come up. For those problems, studies are performed with parallel/distributed computing. However, in the past, only single type of processor was used. In GPU's case, it performs fast, but at the same time, it has limited memory. On the other hand, in CPU, it performs slower than that of GPU. To solve the problem, we implemented a computing model that can handle any FDTD simulation regardless of size on the cluster which consist of heterogeneous processors. We tested the simulation on processors using MPI libraries which is based on 'point to point' communication and verified that it operates correctly regardless of the number of node and type. Also, we analyzed the performance by measuring the total execution time and specific time for the simulation on each test.

Multi-platform Visualization System for Earth Environment Data (지구환경 데이터를 위한 멀티플랫폼 가시화 시스템)

  • Jeong, Seokcheol;Jung, Seowon;Kim, Jongyong;Park, Sanghun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.36-45
    • /
    • 2015
  • It is important subject of research in engineering and natural science field that creating continuing high-definition image from very large volume data. The necessity of software that helps analyze useful information in data has improved by effectively showing visual image information of high resolution data with visualization technique. In this paper, we designed multi-platform visualization system based on client-server to analyze and express earth environment data effectively constructed with observation and prediction. The visualization server comprised of cluster transfers data to clients through parallel/distributed computing, and the client is developed to be operated in various platform and visualize data. In addition, we aim user-friendly program through multi-touch, sensor and have made realistic simulation image with image-based lighting technique.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

Resource Availability-based Multi Auction Model for Cloud Service Reservation and Resource Brokering System (자원 가용성 기반 다중 경매 모델을 이용한 서비스 예약형 클라우드 자원 거래 시스템)

  • Lee, Seok Woo;Kim, Tae Young;Lee, Jong Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • A cloud computing is one of a parallel and distributed computing. The cloud computing provides some service for user with virtual resources. However, a user's service request does not show a time pattern. As a result, each resource also shows a different availability at the same time. This difference affects a quality of service (QoS) and a resource selection for users. Therefore, we propose the resource availability-based multi auction model for cloud service reservation and resource brokering system. The proposed system is to select the proper resource provider based on the users' request. The proposal adopts the multi phase of the auction to transact resources. The system evaluates the available factor of each resource on the auction phase, and finally reserves the service on the adaptive queue. The proposed model shows the better performance than other existing method.

Operation of a Networked Virtual Manufacturing System using Quasi-Procedural Method

  • Noh, Sang-Do;Sheen, Dong-Mok;Hahn, Hyung-Sang;Lee, Kyoil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.177-180
    • /
    • 1999
  • Nowadays, one of the major technical issues in manufacturing is to create an environment to promote collaboration among diverse engineering activities. Collaborative engineering is an innovative approach integrating widely distributed engineering activities through promoting information sharing and actual collaboration. It requires close interactions among developers, suppliers and customers, and consideration of entire product life cycle from concept to disposal. A carefully-designed operating system is crucial for successful collaboration of many different activities in a Networked Virtual Manufacturing System(NVMS). High extensibility, flexibility and efficiency ale the key characteristics requested of an operating system to handle the complexity of the NVMSs. In this paper, we propose a model of the operating system for collaborative engineering using concurrent quasi-procedural method(QPM). QPM is a goal-driven data management technique for distributed and parallel computing environments. It is to be applied to the evaluation of activities to be executed, validities of input data, execution path of activities for a needed output, and expected to greatly improve the productivity of operations by preventing redundant evaluations. Collaboration among many different engineering activities in NVMSs is to be performed by the network of agents that encapsulate the capabilities of both users and their tools.

  • PDF

MRSPAKE : A Web-Scale Spatial Knowledge Extractor Using Hadoop MapReduce (MRSPAKE : Hadoop MapReduce를 이용한 웹 규모의 공간 지식 추출기)

  • Lee, Seok-Jun;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.569-584
    • /
    • 2016
  • In this paper, we present a spatial knowledge extractor implemented in Hadoop MapReduce parallel, distributed computing environment. From a large spatial dataset, this knowledge extractor automatically derives a qualitative spatial knowledge base, which consists of both topological and directional relations on pairs of two spatial objects. By using R-tree index and range queries over a distributed spatial data file on HDFS, the MapReduce-enabled spatial knowledge extractor, MRSPAKE, can produce a web-scale spatial knowledge base in highly efficient way. In experiments with the well-known open spatial dataset, Open Street Map (OSM), the proposed web-scale spatial knowledge extractor, MRSPAKE, showed high performance and scalability.

A Design of a Distributed Computing Problem Solving Environment for Dietary Data Analysis (식이 데이터 분석을 위한 분산 컴퓨팅 문제풀이환경 설계)

  • Choi, Jieun;Ahn, Younsun;Kim, Yoonhee
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.834-839
    • /
    • 2015
  • Recently, wellness has become an issue related to improvements in personal health and quality of life. Data that are accumulated daily, such as meals and momentum records, in addition to body measurement information such as body weight, BMI and blood pressure have been used to analyze the personal health data of an individual. Therefore, it has become possible to prevent potential disease and to analyze dietary or exercise patterns. In terms of food and nutrition, analyses are performed to evaluate the health status of an individual using dietary data. However, it is very difficult to process the large amount of dietary data. An analysis of dietary data includes four steps, and each step contains a series of iterative tasks that are executed over a long time. This paper proposes a problem solving environment that automates dietary data analysis, and the proposed framework increases the speed with which an experiment can be conducted.

Compression-Based Volume Rendering on Distributed Memory Parallel Computers (분산 메모리 구조를 갖는 병렬 컴퓨터 상에서의 압축 기반 볼륨 렌더링)

  • Koo, Gee-Bum;Park, Sang-Hun;Song, Dong-Sub;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.5
    • /
    • pp.457-467
    • /
    • 2000
  • 본 논문에서는 분산 메모리 구조를 갖는 병렬 컴퓨터 상에서 방대한 크기를 갖는 볼륨 데이터의 효과적인 가시화를 위한 병렬 광선 투사법을 제안한다. 데이터의 압축을 기반으로 하는 본 기법은 다른 프로세서의 메모리로부터 데이터를 읽기보다는 자신의 지역 메모리에 존재하는 압축된 데이터를 빠르게 복원함으로써 병렬 렌더링 성능을 향상시키는 것을 목표로 한다. 본 기법은 객체-순서와 영상-순서 탐색 알고리즘 모두의 정점을 이용하여 성능을 향상시켰다. 즉, 블록 단위의 최대-최소 팔진트리의 탐색과 각 픽셀의 불투명도 값을 동적으로 유지하는 실시간 사진트리를 응용함으로써 객체-공간과 영상-공간 각각의 응집성을 이용하였다. 본 논문에서 제안하는 압축 기반 병렬 볼륨 렌더링 방법은 렌더링 수행 중 발생하는 프로세서간의 통신을 최소화하도록 구현되었는데, 이러한 특징은 프로세서 사이의 상당히 높은 데이터 통신 비용을 감수하여야 하는 PC 및 워크스테이션의 클러스터와 같은 더욱 실용적인 분산 환경에서 매우 유용하다. 본 논문에서는 Cray T3E 병렬 컴퓨터 상에서 Visible Man 데이터를 이용하여 실험을 수행하였다.

  • PDF

A Basic Study of Applying the Energy Function Using Time-domain Transient Stability Program (시간영역 과도안정도 프로그램을 이용한 에너지 함수 적용 기초 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Shin, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.199-201
    • /
    • 2007
  • This paper presents new contingency screen and ranking method using the time-domain simulation program and energy function. Since the suggested method is very simple and has fast computation time to calculate energy margin and list the contingency according to the its severity, it can be used in connection with the on-line TSA which has accurate binary search algorithm in parallel or distributed computing environment. The suggested method has been tested by appling to 3-machine and 9-bus system, and its effectiveness has been verified.

  • PDF

HPC(High Performance Computer) Linux Clustering for UltraSPARC(64bit-RISC processor) (UltraSPARC(64bit-RISC processor)을 위한 고성능 컴퓨터 리눅스 클러스터링)

  • 김기영;조영록;장종권
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.45-48
    • /
    • 2003
  • We can easily buy network system for high performance micro-processor, progress computer architecture is caused of high bandwidth and low delay time. Coupling PC-based commodity technology with distributed computing methodologies provides an important advance in the development of single-user dedicated systems. Lately Network is joined PC or workstation by computers of high performance and low cost. Than it make intensive that Cluster system is resembled supercomputer. Unix, Linux, BSD, NT(Windows series) can use Cluster system OS(operating system). I'm chosen linux gain low cost, high performance and open technical documentation. This paper is benchmark performance of Beowulf clustering by UltraSPARC-1K(64bit-RISC processor). Benchmark tools use MPI(Message Passing Interface) and NetPIPE. Beowulf is a class of experimental parallel workstations developed to evaluate and characterize the design space of this new operating point in price-performance.

  • PDF