• Title/Summary/Keyword: distributed optic fiber

Search Result 70, Processing Time 0.02 seconds

Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building (빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

Design of Distributed Fiber Optic Sensor Net for the Detection of External Sound Frequency (외부 음향 주파수 탐지를 위한 분포형 광섬유 센서망 설계)

  • 이종길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.792-796
    • /
    • 2003
  • In this paper, to detect external sound frequency on the latticed structure, fiber optic sensor net using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 50cm in width and 50cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. Single mode fiber, a laser with 1,550nm in wavelength, 2${\times}$2 coupler were used. External sound signal applied to the fiber optic sensor net and the detected optical signals were compared and analyzed to the detected microphone signals against time and frequency domain. Based on the experimental results, fiber optic sensor net using Sagnac interferometer detected external sound frequency, effectively. This system can be expanded to the structural health monitoring system.

  • PDF

Detection of External Sound Frequency by Using the Distributed Fiber Optic Sensor Net (분포형 광섬유 센서망을 이용한 외부 음향 주파수 탐지)

  • 이종길
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.569-576
    • /
    • 2004
  • In this paper, to detect external sound frequencies on the latticed structure, fiber optic sensor net using Sagnac interferometer was fabricated and tested. The latticed structure was fabricated with a dimension of 50 cm in width and 50 cm in height. The optical fiber of 50m in length was distributed and fixed on the surface of the latticed structure. Single mode fiber, a laser with 1,550 nm in wavelength, 2 ${\times}$ 2 coupler were used. External sound signal, 240 Hz, 495 Hz, 1.445 kHz, 2k Hz, applied to the fiber optic sensor net and the detected optical signals were compared to the detected microphone signals against time and frequency domains. Based on the experimental results, fiber optic sensor net using Sagnac interferometer detected external sound frequency, effectively. This system can be expanded to the structural health monitoring system.

Detection of Excited Vibration frequency on the Latticed Fence Structure Using a Distributed Fiber Optic Sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.234-237
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber optic external vibration signal spplied to the latticed fence structure from 100Hz to several kHz. The interferometeric fiber optic sensor detected the excited vibration signal very effectively without any signal processing. The detected optical signals were compared and analyzed to the detected acclerometer signals.

  • PDF

Measurement and Monitoring of Mechanical Loads of Wind Turbines Using Distributed Fiber Optic Sensor (분포형 광섬유 센서를 이용한 풍력발전기의 기계적 부하 측정 및 모니터링)

  • Lee, Jong-Won;Huh, Young-Cheol;Nam, Yong-Yun;Lee, Geun-Ho;Kim, Yoo-Sung;Lee, Yong-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1036
    • /
    • 2007
  • A method for measurement and monitoring of mechanical loads in large slender structures such as wind turbine blade and tower is presented based on continuous strain data obtained from distributed fiber optic sensor. An experimental study was carried out on an aluminum cantilever beam. A static load test was performed and the calculated moment from the distributed fiber optic sensor agree well with the actual applied moment. A series of damages was inflicted on the beam, and vibration tests were carried out for each damage case. The estimated natural frequencies from the distributed fiber optic sensor for each damage case are found to compare well with those from a conventional accelerometer and a numerical analysis based on an energy method.

Detection of excited vibration frequency on the latticed fence structure using a distributed fiber optic sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jongkil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.329.1-329
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in lengtn, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber-optic external vibration signal applied to the latticed structure from 100㎐ to several ㎑. (omitted)

  • PDF

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry (광시간영역 반사계를 이용한 분포형 광섬유 과열 감지 센서)

  • Kim, Dae Hyun;Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • We proposed and demonstrated a distributed fiber-optic overheating detection sensor using optical time domain refrectometry. With increased of temperature the optical fiber is bended by a bi-metal and it result in optical leaky loss of the fiber. The sensor structure is designed in such a way that the signal of overheating is happen when the temperature exceeding a threshold temperature and the optical fiber is protected from excess bending.

Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system

  • Zheng, Xing;Shi, Bin;Zhu, Hong-Hu;Zhang, Cheng-Cheng;Wang, Xing;Sun, Meng-Ya
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.337-348
    • /
    • 2021
  • Brillouin Optical Frequency Domain Analysis (BOFDA) is a distributed fiber optic sensing (DFOS) technique that has unique advantages for performance monitoring of piles. However, the complicated production process and harsh operating environment of offshore PHC pipe piles make it difficult to apply this method to pile load testing. In this study, sensing cables were successfully pre-installed into an offshore PHC pipe pile directly for the first time and the BOFDA technique was used for in-situ monitoring of the pile under axial load. High-resolution strain and internal force distributions along the pile were obtained by the BOFDA sensing system. A finite element analysis incorporating the Degradation and Hardening Hyperbolic Model (DHHM) was carried out to evaluate and predict the performance of the pile, which provides an improved insight into the offshore pile-soil interaction mechanism.

Development of Long-perimeter Intrusion Detection System Aided by deep Learning-based Distributed Fiber-optic Acoustic·vibration Sensing Technology (딥러닝 기반 광섬유 분포 음향·진동 계측기술을 활용한 장거리 외곽 침입감지 시스템 개발)

  • Kim, Huioon;Lee, Joo-young;Jung, Hyoyoung;Kim, Young Ho;Kwon, Jun Hyuk;Ki, Song Do;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Distributed fiber-optic acoustic·vibration sensing technology is becoming increasingly popular in many industrial and academic areas such as in securing large edifices, exploring underground seismic activity, monitoring oil well/reservoir, etc. Long-range perimeter intrusion detection exemplifies an application that not only detects intrusion, but also pinpoints where it happens and recognizes kinds of threats made along the perimeter where a single fiber cable was installed. In this study, we developed a distributed fiber-optic sensing device that measures a distributed acoustic·vibration signature (pattern) for intrusion detection. In addition, we demontrate the proposed deep learning algorithm and how it classifies various intrusion events. We evaluated the sensing device and deep learning algorithm in a practical testbed setup. The evaluation results confirm that the developed system is a promising intrusion detection system for long-distance and seamless recognition requirements.