• Title/Summary/Keyword: distributed loading

Search Result 338, Processing Time 0.034 seconds

Increasing the flexural capacity of RC beams using partially HPFRCC layers

  • Hemmati, Ali;Kheyroddin, Ali;Sharbatdar, Mohammad K.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.545-568
    • /
    • 2015
  • High Performance Fiber Reinforced Cementitious Composites which are called HPFRCC, include cement matrices with strain hardening response under tension loading. In these composites, the cement mortar with fine aggregates, is reinforced by continuous or random distributed fibers and could be used for various applications including structural fuses and retrofitting of reinforced concrete members etc. In this paper, mechanical properties of HPFRCC materials are reviewed briefly. Moreover, a reinforced concrete beam (experimentally tested by Maalej et al.) is chosen and in different specimens, lower or upper or both parts of that beam are replaced with HPFRCC layers. After modeling of specimens in ABAQUS and calibration of those, mechanical properties of these specimens are investigated with different thicknesses, tensile strengths, tensile strains and compressive bars. Analytical results which are obtained by nonlinear finite analyses show that using HPFRCC layers with different parameters, increase loading capacity and ultimate displacement of these beams compare to RC specimens.

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Choi, Jae Woong;Ryu, Yong Hee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.135-148
    • /
    • 2017
  • Topside areas on an offshore oil and gas platform are highly susceptible to explosion. A blast wall on these areas plays an important role in preventing explosion damage and must withstand the expected explosion loads. The uniformly distributed loading condition, predicted by Explosion Risk Analyses (ERAs), has been applied in most of the previous analysis methods. However, analysis methods related to load conditions are inaccurate because the blast overpressure around the wall tends to be of low-level in the open area and high-level in the enclosed area. The main objectives of this paper are to study the effects of applying different load applications and compare the dynamic responses of the blast wall. To do so, various kinds of blast pressures were measured by Computational Fluid Dynamics (CFD) simulations on the target area. Nonlinear finite element analyses of the blast wall under two types of identified dynamic loadings were also conducted.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

The Study on Structural Strength Test Technique by Using Compressed Air Type Loading Method (공기압식 외력부가방법을 이용한 구조강도 시험기법 연구)

  • Kim, Jong-Hwan;Lee, Kee-Bhum;Kim, Ho-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.376-381
    • /
    • 2010
  • The structural strength tests are usually performed to evaluate the structural strength and to verify the structural design and analysis of the vehicle structures. In this paper, the development of a compressed loading type apparatus to load distributed force over the surface of vehicle structure subjected to external loads was described. This apparatus is for structural materials which are easily to fail because of concentrated stresses. This apparatus can apply loads to specimens without any damage on the test specimen's surfaces by using flexible membrane and can be applicable to several kinds of surface profile of structures. The structural strength tests for the flat structure and curved structure with this apparatus were successfully performed, and the test results showed that this type of loading apparatus can be adequate to verify the structural integrity of the fragile structures.

The Local Behavior Characteristics of a Plate Stiffened with Closed Ribs (폐단면 리브 보강판의 국부 거동 특성)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.277-288
    • /
    • 2014
  • In this study, the local displacement and moment characteristics of a plate stiffened with closed ribs are analyzed according to the dimensions of stiffened plates. The analyzed results of various stiffened plates under square distributed load show that the effect of the loading panel width to the local behavior is dominant but that of the next panel width is very small. And the local behavior of reference stiffened plates can be expressed by the angle between the plate and the rib, and that of other stiffened plates can be obtained by multiplying ratio functions of the loading panel width, plate thickness, rib thickness, rib height and next panel width and they give good results. Applying ratio functions to other loading sizes shows that the applicability of ratio functions except for the loading panel width is proved and the modified ratio functions of the loading panel width improve error ratios. Therefore, the local displacement and moments of a plate stiffened with closed ribs can easily achieve proper results regardless of the dimensions using ratio functions proposed in this study.

Characteristics of Fatigue Crack Propagations with Respect to Loading Directions in Butt-Welded Steel Plates with the Same Direction of Rolling and Welding Bead (압연 및 용접방향이 같은 맞대기 용접강판의 하중방향에 따른 피로균열 진전특성)

  • Lee Yong-Bok;Kim Sung-Yeup;Oh Byung-Duck
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.37-42
    • /
    • 2005
  • Most of the welding steel plate structures have complicated mechanical problems such as rolling directional characteristics and residual stresses caused by manufacturing process. For the enhancement of reliability and safety in those structures, therefore, a systematic investigation is required. SS400 steel plate used for common structures was selected and welded by FCAW butt-welding process for this study, and then it was studied experimently about characteristics of fatigue crack propagations with respect to rolling direction and welding residual stress of welded steel plates. When the angles between rolling direction and tensile loading direction in base material are increased, their ultimate strength not show a significant difference, but yielding strength are increased and elongations are decreased uniformly. It is also shown that fatigue crack growth rate can be increased from those results. When the angles between welding bead direction and loading direction in welded material are increase, fatigue crack growth rate of them are decreased and influenced uniformly according to the conditions of residual stress distribution. In these results, it is shown that the welded steel plate structures are needed to harmonize distributed welding residual stress, rolling direction and loading direction fur the improvement of safety and endurance in manufacture of their structures.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Irregular Arrangement of Reference Points (참조점의 불규칙적 배치를 통한 PIC보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cho, Jae Ung;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.216-221
    • /
    • 2019
  • Piecewise integrated composite (PIC) beam has different stacking sequences for several regions with respect to their superior load-resisting capabilities. On the interest of current research is to improve bending characteristics of PIC beam, with assigning specific stacking sequence to a specific region with the help of machine learning techniques. 240 elements of from the FE model were chosen to be reference points. Preliminary FE analysis revealed triaxialities at those regularly distributed reference points to obtain learning data creation of machine learning. Triaxiality values catagorise the type of loading i.e. tension, compression or shear. Machine learning model was formulated by learning data as well as hyperparameters and proper load fidelity was suggested by tuned values of hyperparameters, however, comparatively higher nonlinearity intensive region, such as side face of the beam showed poor load fidelity. Therefore, irregular distribution of reference points, i.e., dense reference points were distributed in the severe changes of loading, on the contrary, coarse distribution for rare changes of loading, was prepared for machine learning model. FE model with irregularly distributed reference points showed better load fidelity compared to the results from the model with regular distribution of reference points.

A Novel Method for Anti-Islanding Using Reactive Power (무효전력 제어를 이용한 새로운 독립운전 방지 기법)

  • Choi, Bong-Joo;Jeong, Jin-Beom;Kim, Hee-Jun;Baek, Soo-Hyun;Lee, Ju;Ahn, Kang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • An islanding occurs when the utility grid is removed but distributed sources continuo to operate and provide power to local loads and grid. This can cause a significant risk to safety and equipment. This report present a novel anti-islanding method to prevent an islanding phenomenon. The proposed method changes the reactive power of the load. Therefore the phase difference between output voltage and current is periodically changed within decided value. When the utility-grid is removed, the frequency of output voltage and current will increase or decrease. And the proposed system will detect the change of frequency and shut down the distributed source. While the conventional methods have some difficulties in detecting particular islanding condition such as a small change in loading, the proposed method can detect most conditions. The performance was verified through experiments.

  • PDF