• Title/Summary/Keyword: distributed loading

Search Result 341, Processing Time 0.023 seconds

A new developed approach for EDL induced from a single concentrated force

  • Bekiroglu, Serkan;Arslan, Guray;Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1105-1119
    • /
    • 2016
  • In this study, it is presented that a new developed approach for equivalent area-distributed loading (EADL) induced from a single concentrated force. For the purpose, a full scale 3D steel formwork system was constructed in laboratory conditions. A developed load transmission platform was put on the formwork system and loaded step by step on the mass center. After each load increment, displacement was measured in several crictical points of the system. The developed platform which was put in to slab of formwork to equivalently distribute the load from a point to the whole slab was constituted using I profiles. A 3D finite element model of the formwork system was analyzed to compare numerical displacement results with experimental ones. In experimental tests,difference among the displacements obtained from reference numerical model (model applied EADL) and main numerical model (model applied single load using a load cell via load transmission platform) is about %13 in avarage. Difference among the displacements obtained from experimental results and main numerical model under 30 kN single load is about %11 in avarage. The results revealed that the displacements obtained experimentally and numerically are dramatically closed to each other. It is highlighted from the study that the developed approach is reliable and useful to get EDL.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.

Dynamic Shear Modulus and Damping Ratio of Soft Clay (연약점토의 동력학적 전단탄성계수 및 감쇠비)

  • 하광현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1986
  • Considering the effects of confining pressure, initial shear stress, cyclic stress ratio and number of loading cycles, cyclic triaxial tests are carried out to clarify the soil dynamic properties such as shear modulus and value of material damping of clay under undrained cyclic loading conditions. The results show that no obvious dependency on initial shear stress and effective confining stress are recognized in the shear modulus and damping ratio plotted versus strain. However, the shear modulus decreases and the damping ratio increases with increasing axial strain. When compared with others, it is also revealed that the shear moduli are distributed within the range curves obtained using empirical equations derived by Marcuson et al. (3) and Kokusho et al. (4), and damping ratios are distributed between the curves obtained by Kokusho et al. (4) and Ishihara et al. (9).

  • PDF

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Estimation Method of Strain Distribution for Safety Monitoring of Multi-span Steel Beam Using FBG Sensor (FBG센서를 이용한 다경간 강재 보 구조물의 안전성 모니터링을 위한 변형률 분포 추정 기법)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Park, Hyo-Seon;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.138-149
    • /
    • 2014
  • This study proposes an estimation method of strain distribution for multi-span steel beam structure under unspecific loading conditions. The estimation method in this paper employs the curve fitting using the least square method from measured strain data, not analytical method. To verify the proposed estimation method, a static loading test for multi-span steel beam on which distributed and concentrated loads act was conducted. The strain data for verification was measured by FBG sensors that have multiplexing technology. The analysis of the accuracy of strain estimation for distributed and concentrated loads and the errors by considering the number of measured points used in the estimation were conducted. In the maximum strain points, the strains could be estimated with the errors of 5.89% (loading step 1) and 6.26% (loading step 2). In case of decreasing the number of sensors, it was also confirmed that the errors increased (0.26~0.37%). Through the curve fitting method, it is possible to estimate the strain distribution (maximum strains and their locations) of multi-span beam for unspecific loads and go over the limit of the analytical estimation method which is suitable for specific distributed loads.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN PORCELAIN LAMINATE VENEERS WITH VARIOUS AMOUNTS OF INCISAL COVERAGE AND TYPES OF INCISAL FINISH LINE UNDER TWO LOADING CONDITIONS (절단피개량과 절단변연형태 및 하중각도가 도재라미네이트 베니어 내의 응력분포에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Ryoo, Kyung-Hee;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.143-166
    • /
    • 1999
  • The success of porcelain laminate veneer depends on the bond strength between tooth structure and ceramic restoration and the design of tooth preparation. In particular, incisal coverage and incisal finish line are the two most important factors in long-term fracture resistance. Although the majority of clinicians are practicing incisal coverage and there are various opinions on the geo-metrical ratio between the clinical crown length of the remaining tooth structure and the length of incisal extension in porcelain laminate veneer and the optimal incisal finish lines. scientific evidence still loaves much to be desired. The purpose of this study was to determine the effects of the amounts of incisal coverage and the types of incisal finish line on the stress distribution in maxillary anterior porcelain laminate veneers under two different loading conditions. Three-dimensional finite element models of a maxillary anterior porcelain veneer with differ-ent amounts of incisal coverage ; 0, 1, 2, and 3mm and different incisal finish lines feathered edge, incisal bevel, reverse bevel and lingual chamfer with various amounts of lingual extension were developed. 300N force was applied at the point 0.5mm cervical of the linguoincisal edge in two loading conditions ; A) 125 degrees, B) 132 degrees. Tensile and compressive stress in ceramic and shear stress in the resin cement layer were analyzed using three-dimensional finite element method. The results were as follows : 1. The types of incisal finish line had more influence on the stress distribution in porcelain laminate veneer than the amounts of incisal coverage. 2. In case of no incisal coverage, incisal beveled laminate exhibited more evenly distributed tensile stress than feathered edged laminate. And in case of incisal coverage, reverse beveled laminate and lingual chamfered laminate with 1mm lingual extension exhibited more evenly distributed tensile stress than lingual chamfered laminates with 2mm and 3mm lingual extension. 3. As long as the lingual chamfer goes, less tensile stress was found at the incisal edge, while much more tensile stress was found at the lingual margin area in proportion to the length of lingual extension. 4. Under 125 degree load, tensile stress in porcelain laminate veneer had increased compared with that under 132 degree load and the difference exhibited by the change of the amount of tooth support was larger. 5. The types of incisal finish line and the distance from the incisal finish line to the loading point had more influence on the shear stress distribution in the resin cement layer than the amounts of incisal coverage. In contrast loading condition had little influence.

  • PDF

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips

  • Keskin, Mehmet Salih;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.249-262
    • /
    • 2014
  • Tire chips and tire chips-soil mixtures can be used as alternative fill material in many civil engineering applications. In this study, the potential benefits of using tire chips as lightweight material to improve the bearing capacity and the settlement behavior of sand slope was investigated experimentally. For this aim, a series of direct shear and model loading tests were conducted. In direct shear tests, the effect of contents of the tire chips on the shear strength parameters of sand was investigated. Different mixing ratios of 0, 5, 10, 15 and 20% by volume were used and the optimum mixing ratio was obtained. Then, laboratory model tests were performed on a model strip footing on sand slope reinforced with randomly distributed tire chips. The loading tests were carried out on sand slope with relative density of 65% and the slope angle of $30^{\circ}C$. In the loading tests the percentage of tire chips to sand was taken as same as in direct shear tests. The results indicated that at the same loading level the settlement of strip footing on sand-tire chips mixture was about 30% less than in the case of pure sand. Addition of tire chips to sand increases BCR (bearing capacity ratio) from 1.17 to 1.88 with respect to tire chips content. The maximum BCR is attained at tire chips content of 10%.

A Study on the Evaluation of elastic buckling strength of Singly Symmetric I-Beams (일축대칭 I형보의 탄성좌굴강도 산정에 관한 연구)

  • Ku, So-Yeun;Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Jin-Ok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.79-82
    • /
    • 2008
  • The elastic critical moment of I-beams subjected to moment is directly affected by the following factors; loading type; loading position with respect to the mid-height of the cross section; end restraint conditions. Most design specifications usually provide buckling solutions derived for uniform moment loading condition and account for variable moment along the unbraced length with a moment gradient correction factor applied to these solutions. In order for the method in the SSRC Guide to be applicable for singly symmetric I-beams, improved moment gradient correction factors were proposed in this study. Finite element buckling analyses of singly symmetric I-beams subjected to transverse loading applied at different heights with respect to the mid-height of the cross section were conducted. Transverse loads consisting of a mid-span point load and a uniformly distributed load were considered in the investigation.

  • PDF