• Title/Summary/Keyword: distributed generation system

Search Result 677, Processing Time 0.042 seconds

Optimal Operating Strategy of Distributed Generation Considering Hourly Reliability Worth (시간별 신뢰도 가치를 고려한 분산전원의 최적 운영전략)

  • 배인수;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.457-462
    • /
    • 2003
  • This paper presents an optimal operating strategy of distributed generation (DG) with reliability worth evaluation of distribution systems. Using DG for peak-shaving unit could reduce the overall system operating cost, and using DG for standby power unit could reduce the customer interruption cost. If DG operating cost is less than utility power cost in peak time, DG should be running to reduce the overall system operating cost. When customer interruption cost enlarges, however, standby power strategy may be the better operating strategy than peak-shaving strategy. Selection of whether DG should be operated for peak-shaving or for standby power, needs the accurate reliability worth evaluation and the accurate power cost evaluation. Instead of using annual average reliability worth, the concept of hourly reliability worth is introduced in this paper to determine the optimal operating decision of DG. Applying suggested hourly reliability worth, the distribution companies that possess DG could set up the optimal operating strategy of DG.

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

Overvoltage Protection Controller Design of Distributed Generation Connected to Power Grid Considering Islanding Condition

  • Cha, Jae-Hun;Park, Kyung-Won;Ahn, Hong-Seon;Kwon, Kyoung-Min;Oh, Jin-Hong;MAHIRANE, Philemon;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.599-607
    • /
    • 2018
  • Distributed generation (DG) is being highlighted as an alternative for future power supplies, and the number of DG systems connected to conventional power systems is steadily increasing. DG generators are designed using power electronics and can give rise to various power quality problems, such as overvoltage or overcurrent. Particularly, unintentional islanding operation can occur in a conventional power system when the power grid is separated from the DG systems. Overvoltage may occur in this situation, depending on the power generation and power consumption. However, overvoltage phenomena might not happen even when islanding occurs. Therefore, it is necessary to analyze the fault characteristics during islanding. In this study, a fault analysis of islanding operation was carried out using PSCAD/EMTDC, and a countermeasure for the overvoltage problem is proposed.

Parametric Evaluation Method of Protectability in a Distribution System (파라메터 관점에서의 배전계통 보호도 평가방법)

  • Cho, P.S.;Hyun, S.H.;Lim, S.I.;Lee, S.J.;Lee, D.S.;Waldemar, Waldemar
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.241-243
    • /
    • 2002
  • Recently, great efforts are concentrated on the autonomous, adaptive protection schemes with advanced artificial intelligence and digital technology. It is highly required for a next generation protective system not only to detect and to clear a fault, but also to fit itself to the changing environment. In this paper it is suggested an evaluation method for the protection ability of a protective system in a distributed system. The suggested method is of bottom-up scheme, in other words, protection ability is estimated from the lowest level of parameters in each protective devices to the highest level of the whole protective system. This feature makes it possible to evaluate the protection ability either for the protective device(or a system), or for a protected system. And, in addition, it is enabled that the protectability concept can be applied in the design stage of a protective system for a distribution network. The proposed method is applied to a simple distributed network to show its effectiveness.

  • PDF

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (수용가 직류 서비스를 위한 무접점 전원장치)

  • Chung, Bong-Geun;Kang, Sung-In;Kim, Yoon-Ho;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contactless power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

Development of a Transmission/Distribution Integrated Analysis Hybrid Algorithm for System Operation Platform Including Distributed Generation (분산전원을 포함하는 시스템 운용 플랫폼을 위한 송배전 통합 해석 하이브리드 알고리즘 개발)

  • Song, Chong-Suk;Suh, Jae-Wan;Jang, Moon-Jong;Jang, Gil-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • Owing to the increase in the penetration of distributed generation the DGs connected to the distribution system have an effect on the system conditions of the transmission system and neighboring distribution systems. This makes the separate analysis of the transmission and distribution system no longer valid and requires the consideration of both the system in the analysis process. This paper proposes a transmission/distribution integrated analysis hybrid algorithm that would ensure the accurate analysis of the system by reflecting the results of the transmission and distribution system analysis on each other. Different scenarios are being analysed in order to verify the effectiveness of the hybrid algorithm by observing the effects of the DG connected distribution system on the transmission system and neighboring distribution systems. The algorithm and simulations performed are being conducted by MATLAB and the IEEE 30 bus system and a test distribution system has been utilized for the transmission and distribution systems respectively.

Development of Three Phase Optimal Power Flow for Distributed Generation Systems (분산전원계통을 위한 3상 최적조류계산 프로그램 개발)

  • Song, Hwa-Chang;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

A Study on Distributed Generation System Interface (분산형전원의 전력계통 인터페이스 문제와 해결 방안)

  • Roh, Jae-Hyung;Shin, Young-Kyun;Kim, Bal-Ho.H.;Kim, Chang-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.527-529
    • /
    • 2001
  • Interfaces are the point of interconnection between distributed generation and the energy infrastructure. These interfaces are generally physical but can include a market dimension as well. While there are issues surrounding various interfaces, the most important issues in the short term are on the electrical interface. Much of the discussion and debate surrounding distributed generation interconnection has centered on technical issues. However, there are two elements of Interconnection that merit equal consideration-process and contractual issues. The solution of distributed generation Interconnection issues depends on whether existing requirements can be modified to make them more efficient, transparent, and standardized while maintaining the grid's reliability and safety. In this paper, two main courses, standardization and third party participation, are suggested for the resolution of these issues.

  • PDF

Thyristor-Based Resonant Current Controlled Switched Reluctance Generator for Distributed Generation

  • Emadi Ali;Patel Yogesh P.;Fahimi Babak
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.68-80
    • /
    • 2007
  • This paper covers switched reluctance generator (SRG) and its comparison with induction and synchronous machines for distributed generation. The SRG is simple in design, robust in construction, and fault tolerant in operation; it can also withstand very high temperatures. However, the performance and cost of the SRG power electronics driver are highly affected by the topology and design of the converter. IGBT and MOSFET based converters are not suitable for very high power applications. This paper presents thyristor-based resonant converters which are superior candidates for very high power applications. Operations of the converters are analyzed and their characteristics and dynamics are determined in terms of the system parameters. The resonant converters are capable of handling high currents and voltages; these converters are highly efficient and reliable as well. Therefore, they are suitable for high power applications in the range of 1MW or larger for distributed generation.

Simulation Studies on Monitoring System for Interconnection of Distibuted Generation to Power Grid (분산전원 계통 연계 상황 모니터링을 위한 시뮬레이션 연구)

  • Oh, Sung-Nam;Han, Chul-Wan;Yoon, Ki-Don;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper describes a monitoring system that monitors power quality and undesirable accidents when distributed generations are connected to the power grid. Prior to develop and operate a physical monitoring system, we constitute a simulation device to simulate the monitoring processes for the situations. The simulation system consists of the server and the client that connected by communication line. This system has various functions to monitor the power quality and the connection situation. Those functions are generation, transmission, acquisition and analysis of the simulated power data. This research seems very important to get the reliable and intelligent connection algorithm through the result of simulated monitoring system. Also hereafter, as this system uses the remote monitoring system through network and constitute the data base(DB), it will play an important role in building the automation of power system efficiently and systematically.

  • PDF