• 제목/요약/키워드: distributed compressive sensing

검색결과 13건 처리시간 0.015초

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

Joint Sampling Rate and Quantization Rate-Distortion Analysis in 5G Compressive Video Sensing

  • Jin-xiu Zhu;Christian Esposito;Ai-min Jiang;Ning Cao;Pankoo Kim
    • Journal of Internet Technology
    • /
    • 제21권1호
    • /
    • pp.203-219
    • /
    • 2020
  • Compressed video sensing (CVS) is one of the 5G application of compressed sensing (CS) to video coding. Block-based residual reconstruction is used in CVS to explore temporal redundancy in videos. However, most current studies on CVS focus on random measurements without quantization, and thus they are not suitable for practical applications. In this study, an efficient ratecontrol scheme combining measurement rate and quantization for residual reconstruction in CVS is proposed. The quantization effects on CS measurements and recovery for video signals are first analyzed. Based on this, a mathematical relationship between quantitative distortion (QD), sampling rate (SR), and the quantization parameter (QP) is derived. Moreover, a novel distortion model that exhibits the relationship between QD, SR, and QP is presented, if statistical independency between the QD and the CS reconstruction distortion is assumed. Then, using this model, a rate-distortion (RD) optimized rate allocation algorithm is proposed, whereby it is possible to derive the values of SR and QP that maximize visual quality according to the available channel bandwidth.

Reliability-Based Deblocking Filter for Wyner-Ziv Video Coding

  • Dinh, Khanh Quoc;Shim, Hiuk Jae;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권2호
    • /
    • pp.129-142
    • /
    • 2016
  • In Wyner-Ziv coding, video signals are reconstructed by correcting side information generated by block-based motion estimation/compensation at the decoder. The correction is not always accurate due to the limited number of parity bits and early stopping of low-density parity check accumulate (LDPCA) decoding in distributed video coding, or due to the limited number of measurements in distributed compressive video sensing. The blocking artifacts caused by block-based processing are usually conspicuous in smooth areas and degrade the perceptual quality of the reconstructed video. Conventional deblocking filters try to remove the artifacts by treating both sides of the block boundary equally; however, coding errors generated by block-based processing are not necessarily the same on both sides of the block boundaries. Such a block-wise difference is exploited in this paper to improve deblocking for Wyner-Ziv frameworks by designing a filter where the deblocking strength at each block can be non-identical, depending on the reliability of the reconstructed pixels. Test results show that the proposed filter not only improves subjective quality by reducing the coding artifacts considerably, but also gains rate distortion performance.