• Title/Summary/Keyword: distributed cloud

Search Result 326, Processing Time 0.027 seconds

Design and Implementation of Cloud-based Sensor Data Management System (클라우드 기반 센서 데이터 관리 시스템 설계 및 구현)

  • Park, Kyoung-Wook;Kim, Kyong-Og;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.672-677
    • /
    • 2010
  • Recently, the efficient management system for large-scale sensor data has been required due to the increasing deployment of large-scale sensor networks. In this paper, we propose a cloud-based sensor data management system with low cast, high scalability, and efficiency. Sensor data in sensor networks are transmitted to the cloud through a cloud-gateway. At this point, outlier detection and event processing is performed. Transmitted sensor data are stored in the Hadoop HBase, distributed column-oriented database, and processed in parallel by query processing module designed as the MapReduce model. The proposed system can be work with the application of a variety of platforms, because processed results are provided through REST-based web service.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.

The Operation Method of Coordinated Multi-point Transmission/Reception in Cloud Base Station (클라우드 기지국에서의 조정 다중점 송수신 운용 방법)

  • Park, Soon-Gi;Shin, Yeon-Seung;Song, Pyeong-Jung;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.775-784
    • /
    • 2013
  • Mobile operators are considering a variety of technical measures to cope with the explosion of data while reducing TCO(Total Cost of Ownership) of their networks. In this paper, to investigate the possibility about one of such technical measures, system level simulation to evaluate the performance of the capacity and mobility was performed in cloud base station structure to apply coordinated multi-point transmission and reception. As a result, we find out that system capacity and mobility performance may be improved according to the scale and application area of cloud base station with the operation of coordinated multi-point transmission and reception, and these mutual causality can provide practical guidelines to mobile network's operation.

A Performance Comparison of Distributed Data Processing Frameworks for Large Scale Graph Data (대규모 분산 처리 프레임워크에 따른 대규모 그래프 처리 성능 비교)

  • Bae, Kyung-sook;Kong, Yong-joon;Shim, Tak-kil;Shin, Eui-seob;Seong, Kee-kin
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.469-472
    • /
    • 2012
  • 최근 IT 분야의 화두로 '빅 데이터'가 떠오르고 있으며 많은 기업들이 이를 분석하여 이익을 증대하기 위한 노력을 하고 있다. 이에 구글은 초기에 맴리듀스라고 하는 대용량 분산처리 프레임워크 기술을 확보하여 이를 기반으로 한 서비스를 제공하고 있다. 그러나 스마트 단말 및 소설미디어 등의 출현으로 다양한 디지털 정보들이 그래프로 표현되는 추세가 강화되고 있으며 기존의 맵리듀스로 이를 처리하는 데에 한계를 느낀 구글은 Pregel 이라는 그래프 형 자료구조에 최적화된 또 다른 분산 프레임워크를 개발하였다. 본 논문에서는 일반적인 그래프 형 데이터가 갖는 특성을 분석하고, 대용량 그래프 데이터를 처리하는데 있어 맵리듀스가 갖는 한계와 Pregel은 어떤 방식으로 이를 극복하고 있는지를 소개한다. 또한 실험을 통하여 데이터의 특성에 따른 적절한 프레임워크의 선택이 대용량 데이터를 처리하는 데에 있어서 얼마나 큰 영향을 미치는지 확인한다.

DNA Based Cloud Storage Security Framework Using Fuzzy Decision Making Technique

  • Majumdar, Abhishek;Biswas, Arpita;Baishnab, Krishna Lal;Sood, Sandeep K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3794-3820
    • /
    • 2019
  • In recent years, a cloud environment with the ability to detect illegal behaviours along with a secured data storage capability is much needed. This study presents a cloud storage framework, wherein a 128-bit encryption key has been generated by combining deoxyribonucleic acid (DNA) cryptography and the Hill Cipher algorithm to make the framework unbreakable and ensure a better and secured distributed cloud storage environment. Moreover, the study proposes a DNA-based encryption technique, followed by a 256-bit secure socket layer (SSL) to secure data storage. The 256-bit SSL provides secured connections during data transmission. The data herein are classified based on different qualitative security parameters obtained using a specialized fuzzy-based classification technique. The model also has an additional advantage of being able to decide on selecting suitable storage servers from an existing pool of storage servers. A fuzzy-based technique for order of preference by similarity to ideal solution (TOPSIS) multi-criteria decision-making (MCDM) model has been employed for this, which can decide on the set of suitable storage servers on which the data must be stored and results in a reduction in execution time by keeping up the level of security to an improved grade.

User Authentication Protocol through Distributed Process for Cloud Environment (클라우드 환경을 위한 분산 처리 사용자 인증 프로토콜)

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.841-849
    • /
    • 2012
  • Cloud computing that provides IT service and computer resource based on internet is now getting attention. However, the encrypted data can be exposed because it is saved in cloud server, even though it is saved as an encrypted data. In this paper, user certification protocol is proposed to prevent from illegally using of secret data by others while user who locates different physical position is providing secret data safely. The proposed protocol uses one way hash function and XOR calculation to get user's certification information which is in server when any user approaches to particular server remotely. Also it solves user security problem of cloud.

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.

A Hadoop-based Multimedia Transcoding System for Processing Social Media in the PaaS Platform of SMCCSE

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku;Jeong, Changsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2827-2848
    • /
    • 2012
  • Previously, we described a social media cloud computing service environment (SMCCSE). This SMCCSE supports the development of social networking services (SNSs) that include audio, image, and video formats. A social media cloud computing PaaS platform, a core component in a SMCCSE, processes large amounts of social media in a parallel and distributed manner for supporting a reliable SNS. Here, we propose a Hadoop-based multimedia system for image and video transcoding processing, necessary functions of our PaaS platform. Our system consists of two modules, including an image transcoding module and a video transcoding module. We also design and implement the system by using a MapReduce framework running on a Hadoop Distributed File System (HDFS) and the media processing libraries Xuggler and JAI. In this way, our system exponentially reduces the encoding time for transcoding large amounts of image and video files into specific formats depending on user-requested options (such as resolution, bit rate, and frame rate). In order to evaluate system performance, we measure the total image and video transcoding time for image and video data sets, respectively, under various experimental conditions. In addition, we compare the video transcoding performance of our cloud-based approach with that of the traditional frame-level parallel processing-based approach. Based on experiments performed on a 28-node cluster, the proposed Hadoop-based multimedia transcoding system delivers excellent speed and quality.

Content Distribution for 5G Systems Based on Distributed Cloud Service Network Architecture

  • Jiang, Lirong;Feng, Gang;Qin, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4268-4290
    • /
    • 2015
  • Future mobile communications face enormous challenges as traditional voice services are replaced with increasing mobile multimedia and data services. To address the vast data traffic volume and the requirement of user Quality of Experience (QoE) in the next generation mobile networks, it is imperative to develop efficient content distribution technique, aiming at significantly reducing redundant data transmissions and improving content delivery performance. On the other hand, in recent years cloud computing as a promising new content-centric paradigm is exploited to fulfil the multimedia requirements by provisioning data and computing resources on demand. In this paper, we propose a cooperative caching framework which implements State based Content Distribution (SCD) algorithm for future mobile networks. In our proposed framework, cloud service providers deploy a plurality of cloudlets in the network forming a Distributed Cloud Service Network (DCSN), and pre-allocate content services in local cloudlets to avoid redundant content transmissions. We use content popularity and content state which is determined by content requests, editorial updates and new arrivals to formulate a content distribution optimization model. Data contents are deployed in local cloudlets according to the optimal solution to achieve the lowest average content delivery latency. We use simulation experiments to validate the effectiveness of our proposed framework. Numerical results show that the proposed framework can significantly improve content cache hit rate, reduce content delivery latency and outbound traffic volume in comparison with known existing caching strategies.

A Performance Analysis Based on Hadoop Application's Characteristics in Cloud Computing (클라우드 컴퓨팅에서 Hadoop 애플리케이션 특성에 따른 성능 분석)

  • Keum, Tae-Hoon;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we implement a Hadoop based cluster for cloud computing and evaluate the performance of this cluster based on application characteristics by executing RandomTextWriter, WordCount, and PI applications. A RandomTextWriter creates given amount of random words and stores them in the HDFS(Hadoop Distributed File System). A WordCount reads an input file and determines the frequency of a given word per block unit. PI application induces PI value using the Monte Carlo law. During simulation, we investigate the effect of data block size and the number of replications on the execution time of applications. Through simulation, we have confirmed that the execution time of RandomTextWriter was proportional to the number of replications. However, the execution time of WordCount and PI were not affected by the number of replications. Moreover, the execution time of WordCount was optimum when the block size was 64~256MB. Therefore, these results show that the performance of cloud computing system can be enhanced by using a scheduling scheme that considers application's characteristics.