• Title/Summary/Keyword: distance-time diagram

Search Result 28, Processing Time 0.026 seconds

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

A MapReduce-based kNN Join Query Processing Algorithm for Analyzing Large-scale Data (대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘)

  • Lee, HyunJo;Kim, TaeHoon;Chang, JaeWoo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2015
  • Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzing the large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.

A Study on Dynamic Capacity Assessment of PSC Box Girder High Speed Railway Bridges Using Time Series Load (시계열하중을 이용한 PSC 박스 거더 고속철도교량의 동적성능 평가에 관한 연구)

  • Han, Sung Ho;Bang, Myung Seok;Lee, Woo Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.211-219
    • /
    • 2010
  • The design concept of high speed railway bridges is applied to a method for increasing the stiffness of existing bridge structures considering the impact factor by a static load. Generally, the process of structural design would be relied upon an advanced foreign technology. However, the dynamic amplification factor (DAF) and dynamic capacity assessment of high speed railway bridges may be conducted essentially a detailed estimation because the resonance phenomenon is affected by the long length (380 m) and high speed (300 km/h) moving of a high speed railway (Korea Train eXpress: KTX). Therefore, this study will be examined the dynamic capacity of the typical PSC Box Girder high speed railway bridge efficiently, and offered the basic information for the reasonable structural design. For this, the static analysis is conducted considering the load line diagram of KTX based upon existing references. In addition, the KTX moving load is transformed into the time series load considering various analytical variables. The time history analysis is assessed reasonable using the transformed time series load. At that time, analytical variables for calculating the time series load are considered loading node distance, time increment and KTX velocity variation etc. The dynamic capacity of the PSC Box Girder high speed railway bridge is examined based upon the FE analysis result systematically. The structural safety is assessed quantitatively in accordance with the related regulation of the inside and outside of the country.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Physical protection system vulnerability assessment of a small nuclear research reactor due to TNT-shaped charge impact on its reinforced concrete wall

  • Moo, Jee Hoon;Chirayath, Sunil S.;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2135-2146
    • /
    • 2022
  • A nuclear energy facility is one of the most critical facilities to be safely protected during and after operation because the physical destruction of its barriers by an external attack could release radioactivity into the environment and can cause harmful effects. The barrier walls of nuclear energy facilities should be sufficiently robust to protect essential facilities from external attack or sabotage. Physical protection system (PPS) vulnerability assessment of a typical small nuclear research reactor was carried out by simulating an external attack with a tri-nitro toluene (TNT) shaped charge and results are presented. The reinforced concrete (RC) barrier wall of the research reactor located at a distance of 50 m from a TNT-shaped charge was the target of external attack. For the purpose of the impact assessment of the RC barrier wall, a finite element method (FEM) is utilized to simulate the destruction condition. The study results showed that a hole-size of diameter 342 mm at the front side and 364 mm at the back side was created on the RC barrier wall as a result of a 143.35 kg TNT-shaped charge. This aperture would be large enough to let at least one person can pass through at a time. For the purpose of the PPS vulnerability assessment, an Estimate of Adversary Sequence Interruption (EASI) model was used, which enabled the determination of most vulnerable path to the target with a probability of interruption equal to 0.43. The study showed that the RC barrier wall is vulnerable to a TNT-shaped charge impact, which could in turn reduce the effectiveness of the PPS.

Physiological analysis of mountain climbing exercise (등산운동의 생리학적 분석)

  • Kim, Wan-Tai;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.15-27
    • /
    • 1971
  • Physiological analysis of the physical exercise was made on 9 subjects performing mountain climbing. The course between two points (256 and 516 meters altitude) was 1,300 meters in distance and difference of vertical height was 260 meters making the mean grade of 20%. In the field, the heart rates during uphill or downhill walk were recorded by EKG radio-telemetry. In the laboratory, oxygen consumption was obtained by the recorded heart rates, using individual heart rate vs oxygen consumption diagram obtained by treadmill test. the following results were obtained. 1. Uphill walk time was 36.5 minutes, and during this period the mean heart rate was 149.0 heats/min and peak heart rate was 169.2 beats/min. The total heart beats during the uphill walk was 5.433 beats. 2. The ratio of individual mean heart rate during the uphill walk to the maximal heart rate distributed between 66.6% and 98.3%, and the mean of the total group was 83.1%. The ratio of peak heart rate of uphill walk to the maximal heart rate was 94.5% in the group. Thus uphill walk of a 20% grade mountain course was an exhaustive exercise. 3. Oxygen consumption during uphill walk was 2.22 l/min (ranged between 1.79 and 2.70 l/min) and the ratio of this to the resting oxygen consumption was 8.31. The peak value of oxygen consumption during uphill walk was 2.73 l/min and the ratio of this to the resting oxygen consumption was 10.39. 4. Energy expenditure during uphill walk showed a mean of 11.1 kcal/min and the peak expenditure rate was 13.6 kcal/min. The total energy expenditure during 36.5 minutes of uphill walk was 396 kcal. 5. In downhill walk, the time was 31.7 minutes, mean heart rate was 118.4 (ranged between 100.1 and 142.7) beats/min, and the peak heart rate was only 129.4 beats/min. The ratio of mean heart rate to the maximal heart rate was 66.3%. Total heart beats during downhill walk was 3,710 beats. The ratio of downhill oxygen consumption to the resting consumption was 5.70. The rate of energy expenditure was 7.5 kcal/min, and the total onery expenditure during the 31.7 minutes of downhill walk was 228 kcal. 6. The effect of training was manifest in the uphill walk and not in the downhill walk. After training in mountain course walk, i) the uphill time was shortened, ii) mean heart rate increased, iii) time vs heart rate curve became smooth and showed less frequent zig-zag, i.e., the depth of trough on the curve decreased and the magnitude was less than 10 beats. In non-trained subject the depth of trough on the curve was greater than 50 beats and appeared more frequently. 7. Mountain climbing is a good health promotion exercise. For the promotion of health the reasonable amount of uphill mountain walk exercise in a 20% grade course is a walk for 40 or 50 minutes duration once a week.

  • PDF

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Estimating design floods for ungauged basins in the geum-river basin through regional flood frequency analysis using L-moments method (L-모멘트법을 이용한 지역홍수빈도분석을 통한 금강유역 미계측 유역의 설계홍수량 산정)

  • Lee, Jin-Young;Park, Dong-Hyeok;Shin, Ji-Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.645-656
    • /
    • 2016
  • The study performed a regional flood frequency analysis and proposed a regression equation to estimate design floods corresponding to return periods for ungauged basins in Geum-river basin. Five preliminary tests were employed to investigate hydrological independence and homogeneity of streamflow data, i.e. the lag-one autocorrelation test, time homogeneity test, Grubbs-Beck outlier test, discordancy measure test ($D_i$), and regional homogeneity measure (H). The test results showed that streamflow data were time-independent, discordant and homogeneous within the basin. Using five probability distributions (generalized extreme value (GEV), three-parameter log-normal (LN-III), Pearson type 3 (P-III), generalized logistic (GLO), generalized Pareto (GPA)), comparative regional flood frequency analyses were carried out for the region. Based on the L-moment ratio diagram, average weighted distance (AWD) and goodness-of-fit statistics ($Z^{DIST}$), the GLO distribution was selected as the best fit model for Geum-river basin. Using the GLO, a regression equation was developed for estimating regional design floods, and validated by comparing the estimated and observed streamflows at the Ganggyeong station.