• Title/Summary/Keyword: distance space

Search Result 2,191, Processing Time 0.026 seconds

Comparison of Distance Transforms in Space-leaping for High Speed Fetal Ultrasound Volume Visualization (고속 초음파 태아영상 볼륨 가시화를 위한 공간도약 거리변환 비교)

  • Park, Hye-Jin;Song, Soo-Min;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.57-63
    • /
    • 2007
  • In real time rendering of fetus the empty space leaping while traversing a ray is most frequently used accelerating technique. The main idea is to skip empty voxel samples which do not contribute the result image and it speeds up the rendering time by avoiding sampling data while traversing a ray in the empty region, saving a substantial number of interpolations. Calculating the distance from the nearest object boundary for every yokel can reduce the sampling operation. Among widely-well-known distance maps, those estimates the true distance, such as euclidean distance, takes a long time to compute because of the complicated floating-point operations, and others which uses approximated distance functions, such as city-block and chessboard, provides faster computation time but sampling error may can occur. In this paper, therefore, we analyze the characteristics of several distance maps and compare the number of samples and rendering time. And we aim to suggest the most appropriate distance map for rendering of fetus in ultrasound image.

  • PDF

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

CONVEXITY OF DISTANCE FUNCTION BETWEEN GEODESICS

  • Kim, In-Su;Kim, Yong-Il;Lee, Doo-Hann
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.335-341
    • /
    • 2008
  • In this paper, we use the convexity of distance function between geodesics in a singular Hadamard space to generalize Hadamard-Cartan theorem for 2-dimensional metric spaces. We also determine a neighborhood of a closed geodesic where no other closed geodesic exists in a complete space of nonpositive curvature.

Test bed for autonomous controlled space robot (우주로봇 자율제어 테스트 베드)

  • 최종현;백윤수;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1828-1831
    • /
    • 1997
  • this paper, to represent the robot motion approximately in space, delas with algorithm for position recognition of space robot, target and obstacle with vision system in 2-D. And also there are algorithms for precise distance-measuring and calibration usign laser displacement system, and for trajectory selection for optimizing moving to object, and for robot locomtion with air-thrust valve. And the software synthesizing of these algorithms hleps operator to realize the situation certainly and perform the job without any difficulty.

  • PDF

Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS (Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발)

  • Ryu, Seung-Kyu;Lee, Seung-Jae;Ahn, Woo-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.149-158
    • /
    • 2005
  • The object of this paper is to develop the shortest path algorithm. The existing shortest path algorithm models are developed while considering travel time and travel distance. A few problems occur in these shortest path algorithm models, which have paid no regard to cognition of users, such as when user who doesn't have complete information about the trip meets a strange road or when the route searched from the shortest path algorithm model is not commonly used by users in real network. This paper develops a shortest path algorithm model to provide ideal route that many people actually prefer. In order to provide the ideal shortest path with the consideration of travel time, travel distance and road cognition, travel time is predicted by using Kalman filtering and travel distance is predicted by using GIS attributions. The road cognition is considered by using space data of GIS. Optimal routes provided from this paper are shortest distance path, shortest time path, shortest path considering distance and cognition and shortest path considering time and cognition.

Space Allocation Simulator in Early Urban Design Stage to Reduce Carbon Emissions : Focused on the Prediction of the Travel Distance Using Land Use and Transportation Plan (도시기본계획 단계에서 활용가능한 탄소배출 저감을 위한 공간배치 시뮬레이터 개발 : 토지이용계획도와 교통계획도를 이용한 이동거리 발생량 추정을 중심으로)

  • Lee, Sang-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5321-5329
    • /
    • 2011
  • Space Layout has been an issue in the facet of reducing the co2 in that the transportation sector has been to represent almost more than 20% of the total energy consumption for decades. Beside the development of the more efficient transportation systems, an efficient space layout makes it possible to reduce the amount of energy consumption in the transportation sector through allocating the sub-spaces in such an arrangement of minimizing the travel distances. In line with this thinking, this research aims at implementing a simulator which can calculate the vehicle-based travel distance upon a certain space layout. Based on the findings that the vehicle-based travels take place between the two functionally related sub-spaces, this research addresses a method of calculating the vehicle-based travel distance by multiplying the traffic volume of each sub-spaces by the travel distance to the other connected sub-spaces.

Properties of Galaxies in Cosmic Filaments around the Virgo Cluster

  • Lee, Youngdae;Kim, Suk;Rey, Soo-Chang;Chung, Jiwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2020
  • We present the properties of galaxies in filaments around the Virgo cluster with respect to their vertical distance from the filament spine. Using the NASA-Sloan Atlas and group catalogs, we select galaxies that do not belong to groups in filaments. The filament member galaxies are then defined as those located within 3.5 scale length from the filament spine. The filaments are mainly (~86%) composed of low-mass dwarf galaxies of logh2M∗/M⊙ < 9 dominantly located on the blue cloud in color-magnitude diagrams. We observe that the g - r color and stellar mass of galaxies correlate with their vertical distance from the filament spine in which the color becomes red and stellar mass decreases with increasing vertical filament distance. The galaxies were divided into two subsamples in different stellar mass ranges, with lower-mass (logh2M∗/M⊙ ≤ 8) galaxies showing a clear negative g-r color gradient, whereas higher-mass (logh2M∗/M⊙ > 8) galaxies have a flat distribution against the vertical filament distance. We observe a negative EW(Hα) gradient for higher-mass galaxies, whereas lower-mass galaxies show no distinct variation in EW(Hα) against the vertical filament distance. In contrast, the NUV - r color distribution of higher-mass galaxies shows no strong dependence on the vertical filament distance, whereas the lower-mass galaxies show a distinct negative NUV - r color gradient. We do not witness clear gradients of HI fraction in either the higher- or lower-mass subsamples. We propose that the negative color and stellar mass gradients of galaxies can be explained by mass assembly from past galaxy mergers at different vertical filament distances. In addition, galaxy interactions might be responsible for the contrasting features of EW(Hα) and NUV - r color distributions between the higher- and lower-mass subsamples. The HI fraction distributions of the two subsamples suggest that ram-pressure stripping and gas accretion could be ignorable processes in the Virgo filaments.

  • PDF

RED GIANT BRANCH OF THE METAL POOR GLOBULAR CLUSTERS: I. BUMP, TIP, AND DISTANCE FROM NEAR INERARED PHOTOMETRY

  • Sohn Y.J.;Kim J.W.;Kang A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2006
  • We use near-infrared observations of eight selected Galactic globular clusters to estimate their distances by comparing the observed and theoretically predicted K magnitudes of the red giant branch bumps and tips. The K magnitude levels of the RGB bump and tip have been measured from the luminosity function of the selected RGB stars in the clusters. Theoretical absolute $M_k$ magnitudes of the RGB bump and tip are taken from the Yonsei-Yale isochrones. Comparing the observed apparent K magnitude with the derived absolute $M_k$ magnitude, we calculate the distance moduli of the clusters. We discuss the dependency of the derived distance modulus on the cluster age and the uncertainty of the distance measurement from the near-infrared photometry of the RGB bump and tip.

Face Image Retrieval by Using Eigenface Projection Distance (고유영상 투영거리를 이용한 얼굴영상 검색)

  • Lim, Kil-Taek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.43-51
    • /
    • 2009
  • In this paper, we propose an efficient method of face retrieval by using PCA(principal component analysis) based features. The coarse-to-fine strategy is adopted to sort the retrieval results in the lower dimensional eigenface space and to rearrange candidates at high ranks in higher dimensional eigenface space. To evaluate similarity between a query face image and class reference image, we utilize the PD (projection distance), MQDF(modified quadratic distance function) and MED(minimum Euclidean distance). The experimental results show that the proposed method which rearrange the retrieval results incrementally by using projection distance is efficient for face image retrieval.

Virtual Go to School (VG2S): University Support Course System with Physical Time and Space Restrictions in a Distance Learning Environment

  • Fujita, Koji
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.137-142
    • /
    • 2021
  • Distance learning universities provide online course content. The main methods of providing class contents are on-demand and live-streaming. This means that students are not restricted by time or space. The advantage is that students can take the course anytime and anywhere. Therefore, unlike commuting students, there is no commuting time to the campus, and there is no natural process required to take classes. However, despite this convenient situation, the attendance rate and graduation rate of distance learning universities tend to be lower than that of commuting universities. Although the course environment is not the only factor, students cannot obtain a bachelor's degree unless they fulfill the graduation requirements. In both commuter and distance learning universities, taking classes is an important factor in earning credits. There are fewer time and space constraints for distance learning students than for commuting students. It is also easy for distance learning students to take classes at their own timing. There should be more ease of learning than for students who commute to school with restrictions. However, it is easier to take a course at a commuter university that conducts face-to-face classes. I thought that the reason for this was that commuting to school was a part of the process of taking classes for commuting students. Commuting to school was thought to increase the willingness and motivation to take classes. Therefore, I thought that the inconvenient constraints might encourage students to take the course. In this research, I focused on the act of commuting to school by students. These situations are also applied to the distance learning environment. The students have physical time constraints. To achieve this goal, I will implement a course restriction method that aims to promote the willingness and attitude of students. Therefore, in this paper, I have implemented a virtual school system called "virtual go to school (VG2S)" that reflects the actual route to school.