• Title/Summary/Keyword: distance space

Search Result 2,191, Processing Time 0.027 seconds

A LOWER ESTIMATE OF THE BANACH-MAZUR DISTANCES ON THE QUASI-NORMED SPACES

  • Kang, JeongHeung
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • In this paper we estimate a lower bound of the Banach-Mazur distance between a finite dimensional nonlocally convex space and its Banach envelope space by investigating the properties of the nonlocally convex space and the projection constant which are obtained by factoring the identity operator through $l^k_{\infty}$ on the quasi-normed spaces.

  • PDF

A Study on Distance Estimation in Virtual Space According to Change of Resolution of Static and Dynamic Image (가상현실공간에서 정적 및 동적 이미지의 해상도 변화에 따른 거리추정에 관한 연구)

  • Ryu, Jae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.109-119
    • /
    • 2011
  • The virtual reality (VR) technology has been used as the application of architectural presentation or simulation tool in the field of industry. The high immersion and intuitive visual information are the great merits of design evaluation or environmental simulation when we are using the virtual environments. But the distortion of distance perception in VR is still a big problem when the accuracy of distance presentation is strictly required. For example, distance estimation is especially important when the virtual environments are applied to the presentational tool for evaluation the space design or planning in the field of architecture. If there are some perception error between the built space in real and represented space in virtual, the accurate design evaluation or modification of design is hard to be carried out during the design development stage. In this paper, we have carried out some experiments about distance estimation in the immersive virtual environments to verify the factors and their influence. We made a hypothesis that the lack of the information for the user in VR causes the different distance estimation from the real world because users are usually comfortable with moving fast and long distance in VR environments compared with moving slow and short distance in real space. So, we carried out basic experiment to prove our hypothesis that the lack of information makes subjects estimate the distance of walking in VR shorter compared with the same distance in real. Also, among the factors that probably affect the distance estimation in VR, we have verified the influence of the image resolution. The influence of resolution degradation of image on the distance estimation was verified with the condition of static and dynamic images. The results showed that the resolution has deep relation with the distance estimation. For example, the subject underestimated the distance at the lower resolution condition. We also found the methods of the making the lower resolution image could affect on the visual perception of subjects.

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.

Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance" (X선 촬영실 내 공간선량의 분포와 거리 역자승 법칙과의 관련성)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.301-307
    • /
    • 2013
  • In the present study, space doses generated during X-ray radiography of hand, head, and abdomen, etc. were examined and whether the intensity of space doses of scattering rays is attenuated by the "inverse square law of distance" was figured out. First, the space doses of X-ray with small amounts of generated scattering rays such as hand radiography were mostly attenuated by the "inverse square law of distance" and were not detected at all at a distance of 2m. Second, the space doses of X-ray with large amounts of generated scattering rays such as head or abdomen radiography attenuated in higher rates than the rates under the "inverse square law of distance" at distances ranging from 30cm to 1m from the center of the irradiation field and were attenuated by the "inverse square law of distance" at distances ranging from 1m to 2m. Therefore, in X-ray rooms, the subject should be at least 2m away from the center of the irradiation field in the case of hand radiography and X-ray exposure prevention actions using protective devices are required in the entire spaces of the X-ray rooms in the case of head or abdomen radiography.

The Near-IR TRGB Magnitude and Distance Modulus to NGC 185

  • Sohn, Y.J.;Kang, A.;Han, W.;Park, J.H.;Kim, H.I.;Kim, J.W.;Shin, I.G.;Chun, S.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.245-248
    • /
    • 2008
  • We determined values of distance modulus to nearby dwarf galaxy NGC 185 from the Tip of Red-Giant Branch (TRGB) method. Apparent magnitudes of the TRGB are estimated from the near-infrared JHK luminosity functions (LFs) of the resolved giant branch stars. Theoretical absolute magnitudes of the TRGB in near-infrared bands have been extracted from the Yonsei-Yale isochrones. The observed apparent and theoretical absolute magnitudes of the TRGB provide values of distance modulus to NGC 185 as (m - M) = $23.39{\pm}0.14$, $23.23{\pm}0.22$, and $23.27{\pm}0.26$ for J,H, and K bands, respectively. Distance modulus in bolometric magnitude is also derived as (m - M) = $23.62{\pm}0.12$.

Predicting Factors for the Distance from Skin to the Epidural Space with the Paramedian Epidural Approach (방정중접근법에 의한 경막외 천자시 피부로부터 경막외강까지의 거리의 예측인자)

  • Shim, Jae-Chol;Lee, Myoung-Eui;Kim, Dong-Won
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.349-353
    • /
    • 1996
  • Background: Although the paramedian approach for epidural blockade is useful in some clinical situation, the parameters which are correlated with the distance from skin to the epidural space has not been established. Methods: We studied in 143 patients having elective continuous epidural blocks for relief of postoperative pain. All blocks were performed using paramedian approach with Tuohy needle in the lumbar (group 1, n=100) and thoracic (group 2, n=45) area. We measured the distance from skin to the epidural space, body weight, height, and the angle between the shaft of the needle and the skin. Data were analyzed by linear regression. The relationships between parameters identified by the F-test with a P value of less than 0.05 were considered statistically significant. Results: The mean distance from skin to the lumbar epidural space was $4.4{\pm}0.7$ cm. significant correlation between the body weight and the depth of lumbar epidural space ($\gamma$ value : 0.492) was noted with regression equation of depth(cm)=2.293+0.034${\times}$body weight (kg). Also the significant correlation between the ponderal index (PI) and the depth of lumbar epidural space ($\gamma$ value : 0.539) was noted with regression equation of depth(cm)=1.703+0.07${\times}$PI, The mean distance from skin to the thoracic epidural space was $5.2{\pm}0.7cm$ which did not correlated with other anatomic measurements. Conclusion: We found that PI and body weight are the suitable predictors of the depth of the lumbar epidural space, but not the thoracic epidural space.

  • PDF

An Adjacency Effect in Auditory Distance and Loudness Judgments

  • Min, Yoon-Ki;Lee, Kanghee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.33-39
    • /
    • 2000
  • This study investigated whether the adjacency principle. demonstrated in a perceived visual space, can be applied to auditory space. In order to demonstrate an auditory adjacency principle, multiple sound sources were varied in direction and distance in an acoustically absorbant space. Specifically, a NEAR sound source was located 10° to the left of the listener's midline at a distance of 2 meters; a FAR sound source was located 10° to the right at a distance of 5 meters. These sources served as perceptual reference points with respect to the localization of three test sounds, all at a distance of 3 meters. Two of three test sounds were directionally closer to the NEAR and FAR reference sounds, respectively. The other was between the reference sources directionally. The listener was asked to judge the perceived distances and the loudness of the three test sounds and the two reference sounds. The results indicated that the apparent distances of the test sounds were most determined by the disparity of distance between each test sound and the reference sound most directionally adjacent to it. Therefore, the findings offer evidence that the adjacency principle can be applied to the auditory space.

  • PDF

A study on object distance measurement using OpenCV-based YOLOv5

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.298-304
    • /
    • 2021
  • Currently, to prevent the spread of COVID-19 virus infection, gathering of more than 5 people in the same space is prohibited. The purpose of this paper is to measure the distance between objects using the Yolov5 model for processing real-time images with OpenCV in order to restrict the distance between several people in the same space. Also, Utilize Euclidean distance calculation method in DeepSORT and OpenCV to minimize occlusion. In this paper, to detect the distance between people, using the open-source COCO dataset is used for learning. The technique used here is using the YoloV5 model to measure the distance, utilizing DeepSORT and Euclidean techniques to minimize occlusion, and the method of expressing through visualization with OpenCV to measure the distance between objects is used. Because of this paper, the proposed distance measurement method showed good results for an image with perspective taken from a higher position than the object in order to calculate the distance between objects by calculating the y-axis of the image.

ON DISTANCE-PRESERVING MAPPINGS

  • Jung, Soon-Mo;M.Rassias, Themistocles
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.667-680
    • /
    • 2004
  • We generalize a theorem of W. Benz by proving the following result: Let $H_{\theta}$ be a half space of a real Hilbert space with dimension $\geq$ 3 and let Y be a real normed space which is strictly convex. If a distance $\rho$ > 0 is contractive and another distance N$\rho$ (N $\geq$ 2) is extensive by a mapping f : $H_{\theta}$ \longrightarrow Y, then the restriction f│$_{\theta}$ $H_{+}$$\rho$/2// is an isometry, where $H_{\theta}$$\rho$/2/ is also a half space which is a proper subset of $H_{\theta}$. Applying the above result, we also generalize a classical theorem of Beckman and Quarles.

An efficient space-leaping method using double leaping (이중 도약을 이용한 효율적인 공간 도약법)

  • 이정진;신병석;신영길
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.109-116
    • /
    • 2003
  • Space leaping is one of accelerated image-order volume rendering. This method accelerates rendering speed by finding and leaping the empty space. Although its rendering speed is very fast, it takes long pre-processing time to make the data structure to leap the space. In this paper we propose the look-ahead sampling algorithm to double the leaping distance comparing with previous approaches. This algorithm reduces the preprocessing time to make the distance map without significant changes of rendering time. Also, it accelerates the rendering time.