• Title/Summary/Keyword: distance geometry

Search Result 359, Processing Time 0.048 seconds

Analysis of Turbulent Velocity Fluctuations of Rectangular Shape of the Surface Roughness Change (직사각형 형상의 표면조도 변화에 의한 난류변동분 해석)

  • Oh, Dae-Kyun;Oh, Woo-Jun;Kim, Do-Jung;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In physical engineering, the turbulent flow on the surface roughness is very important. With the welding, design and paint, the hull surface roughness at each stage in the various aspects are important factors to be considered. In this study, the hull surface roughness geometry that was generalized to the PIV was applied to the tank test. The roughness of the surface changed the distance of the interval. Experimental velocity is Re = $1.1{\times}10^4$, Re = $2.0{\times}10^4$ and Re = $2.9{\times}10^4$. The turbulent intensity at the time-average were examined The roughness coefficient occurred with increasing turbulence intensities was stronger. The turbulence intensity away from the roughness in the shape was zero. The variation of turbulence intensity at the experimental flow conditions change was not affected.

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

A Simple Metric for Assessing the Severity of Partial Discharge Activity Based on Time-Sequence-Analysis-Discharge Level Patterns

  • Stewart Brian G;Yang Lily;Judd Martin D;Reid Alistair;Fouracre Richard A
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.313-318
    • /
    • 2006
  • This paper introduces a partial discharge (PD) severity metric, S, based on the evaluation of time-sequence PD data capture and resulting Time-Sequence-Analysis Discharge (TSAD) level distributions. Basically based on an IEC60270 measurement technique, each PD event is time stamped and the discharge level noted. By evaluating the time differences between a previous and subsequent discharge, a 3D plot of time-sequence activity and discharge levels can be produced. From these parameters a measurement of severity, which takes into account dynamic or instantaneous variations in both the time of occurrence and the level of discharge, rather than using standard repetition rate techniques, can be formulated. The idea is to provide a measure of the severity of PD activity for potentially measuring the state of insulation within an item of plant. This severity measure is evaluated for a simple point-plane geometry in $SF_{6}$ as a function of gap distance and applied high voltage. The results show that as the partial discharge activity increases, the severity measure also increases. The importance of future investigations, quantifications and evaluations of the robustness, sensitivity and importance of such a severity measurement, as well as comparing it with typical repetition rate assessment techniques, and other monitoring techniques, are also very briefly discussed.

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

The Crystal and Molecular Structure of Cholesteryl Pentanoate (콜레스테릴 펜타노에이트의 결정 및 분자구조)

  • An, Jung Tae;Park, Yeong Ja
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • Cholesteryl pentanoate $(C_{32}O_2H_{54})$ is orthorhombic, space group $P2_12_12_1$, with a = 21.930(3), b = 21.404(3), c = 6.419(5) $\AA$, Z = 4, V = 3012.8(5)$\AA$$^3$, $D_c$ = 1.04 g$cm^{-3}$, ${\lambda}(Mo\; K{\alpha}$ = 0.71069 $\AA$, $\mu$ = 0.58 $cm^{-1}$, F(000) = 1048, T = 298, R = 0.086 for 1502 unique observed reflections with I > 1.0 $\sigma$ (I). The structure was solved by direct methods and refined by cascade diagonal least-squares refinement. The C-H bond lengths and the methyl groups are fixed and refined as their ideal geometry. A comparison with other cholesteryl esters gives normal structure for the tetracyclic ring, while the tail regions of the side chain and the ester group which stands on end, show a variation from their normal values, presumably due to thermal effects. The molecules are stacked together by non-bonded van der Waals forces with the shortest intermolecular distance of 3.529 $\AA$.

  • PDF

Lane Departure Warning Algorithm Through Single Lane Extraction and Center Point Analysis (단일차선추출 및 중심점 분석을 통한 차선이탈검출 알고리즘)

  • Bae, Jung-Ho;Kim, Soo-Woong;Lee, Hae-Yeoun;Lee, Hyun-Ah;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.35-46
    • /
    • 2009
  • Lane extraction and lane departure warning algorithms using the image sensor attached in the vehicle are addressed. With the research about intelligent automobile, there have been many algorithms about lane recognition and lane departure warning system. However, since these algorithms require to detect 2 lanes, the high time complexity and the low recognition rate under various driving circumstances are critical problems. In this paper, we present a lane departure warning algorithm using single lane extraction and center point analysis that achieves the fast processing time and high detection rate. From the geometry between camera and objects, the region of interest (ROI) is determined and splitted into two parts. Hough transform detects the part of the lane. After the detected lane is restored to have a pre-determined size, lane departure is estimated by calculating the distance from the center point. On real driving environments, the presented algorithm is compared with previous algorithms. Experiment results support that the presented algorithm is fast and accurate.

The Influence of Air Cavity on Interface Doses for Photon Beams (X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정)

  • Chung Se Young;Kim Young Bum;Kwon Young Ho;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF

Automatic Mesh Generation System for FE Analysis of 3D Crack (3차원 균열의 유한요소해석을 위한 자동요소분할 시스템)

  • Lee, Ho-Jeong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2183-2188
    • /
    • 2009
  • This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.