• Title/Summary/Keyword: dissolved silica

Search Result 70, Processing Time 0.019 seconds

Development of Sustainable Releasing Micro Formulation System using γ-Irradiation Technique to Control Phytophthora Blight Disease

  • Park, Hae-Jun;Kim, Hwa-Jung;Kim, Dong Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2011
  • We introduced a novel sustainable slow-releasing agrochemical formulation, a biopolymer bound to silica, for controlling plant diseases. The formulation was obtained through the following process. Curdlan, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW (Deionized-distilled water). The resultant solution was then irradiated using a $^{60}Co$ ${\gamma}$-irradiator (150 TBq of capacity; ACEL, Canada) at KAERI. The resultant solution was treated with phosphorous acid ($H_3PO_3$). Finally, we obtained a novel biopolymer-silica microsized formulation containing phosphorous acid ($H_3PO_3$) from the solution. The morphology of the complex was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images revealed that the curdlan-silica formulation has a particle size ranging from 1 to $3{\mu}m$ with high stability. We also detected that $H_3PO_3$ was distributed within the formulation through energy dispersive X-ray spectroscopy (EDX) analysis. $H_3PO_3$ was sustain-released from the formulation in water. Based on our results, it seems effectively that one or two applications of the formulation during a cropping season will assist in controlling various plant diseases.

Changes in Planktonic Communities and Environmental Factors between Open Versus Closed Artificial Marine Microcosms (개방형 및 폐쇄형 인공해양소형생태계에서 미소생물상 및 수환경의 변화)

  • Jung, Seung Won;Kang, Don-Hyug
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • To understand differences of environmental factors and planktonic communities in closed (CS) versus open (OS) enclosed experimental systems, we performed a study on a 100-L indoor-type artificial marine microcosm. For environmental factors, including water temperature, dissolved inorganic phosphorus, and dissolved silica, there were no significant differences between CS and OS; however, salinity was higher in CS than that of OS due to the evaporation effect. The concentration of dissolved oxygen and dissolved inorganic nitrogen was lower in CS than in OS. The abundance of phytoplankton was lower in CS than in OS. However, abundance of autotrophic nanoflagellates and heterotrophic bacteria varied inversely with that of phytoplankton abundances. In particular, the abundance of heterotrophic nanoflagellates and ciliates increased with bacterial growth after a time lag. Therefore, environmental factors and planktonic communities in CS gradually changed over time and characterized a different artificial ecosystem than in OS.

Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group (흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.118-123
    • /
    • 2019
  • In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3-Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.

Chemical Water Quality of Lake Eui-Am

  • Choe, Sang;Kwak, Hi-Sang
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.63-77
    • /
    • 1971
  • An year-long survey of chemical water quality for Lake Eui-am in Kang-won Province, Korea, was conducted from June 1970 to May 1971 to study the water quality and seasonal variations of productivities in relation to selected physical and chemical environmental factors. A monthly series of water samples were taken at the deepest basin of 18m depth of the lake. Water quality parameters determined were water temperature, Secchi disc reading(transparency), pH, O$\_$2/, CO$\_$2/, alkalinity, acidity, Cl, hardness, Ca, Mg, total residue, total ignitious residue, COD, BOD$\_$5/, nutrients, total-Fe, soluble Fe, Mn and Cu. On the whole, the results indicate that the chemical water quality of Lake Eui-am is high, and vary with season. The lake water is characterized that higher levels of dissolved oxygen(8.6 ml/L in mean of whole water) or percent saturation of dissolved oxygen(114%), and of nitrate nitrogen (523 $\mu\textrm{g}$/L). On the other hand, CO$\_$2/(9.6ppm), chlorides(3.5ppm), Ca(7.7ppm) Mg(2.2ppm), hardness(28.5ppm), silica(2.4ppm) and BOD$\_$5/(1.08ppm) are quite low. In terms of nutrient levels, the lake water exhibit slight signs of eutrophication. The high values for nitrate nitrogen, soluble iron and Cu of the lake water suggest that there are some imputs such as domestic and industrial discharges to the lake.

  • PDF

Effects of nonionic surfactants on the partitioning of naphthalene in soil/water system (토양과 수용액상에서 나프탈렌의 분배에 관한 비이온성 계면활성제의 영향)

  • 하동현;고석오;신원식;김영훈;전영웅;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.283-286
    • /
    • 2002
  • Solubilization and partitioning of naphthalene was investigated in an aqueous system containing soils and surfactants. The environmental behavior of polycyclic aromatic hydrocarbons(PAHs) was mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation systems, surfactants might be an additional variable. a natural soil ,silica and kaolinite were tested as soil media. two nonionic surfactants, Triton X-100 and Hydropropy1-$\beta$-cyclodextrin (HPCD) were employed for naphthalene solubilization. Naphthalene showed linear on natural soil while non-linear sorption on silica and kaolinite. Soils have higher sorption capacity for Triton X-100 than HPCD indicating Triton X-100 formed ad-micelle on the soil surface. Desorption study showed a hysterysis and reversible desorption. The partitioning coefficient(K$_{D}$) of naphthalene was increased as the concentration of surfactant was increased. (below CMC), however, the coefficient was decreased above CMC. This indicates that naphthalene is partitioned into the micelles and the partition occurs competitively on both ad-micelle and free micelles as surfactant concentration increases. Therefore, the target compounds to be dissolved into aqueous phase in a surfactant enhanced remediation system might be highly partitioned on to the ad-micelle resulting in an adverse effect rather increased solubilization would be achieved.d.

  • PDF

Investigation of As(III) Sorption by Sand and Alumina under Anoxic Conditions

  • Lee, Seungyeol;Park, Minji;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.532-538
    • /
    • 2022
  • Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10-7-2.0×10-5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.

Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea

  • Jung, Seung Won;Kwon, Oh Youn;Yun, Suk Min;Joo, Hyoung Min;Kang, Jung-Hoon;Lee, Jin Hwan
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • To understand the effects of fluctuations in dam discharge due to river environments and phytoplankton communities, we monitored such environments and phytoplankton communities biweekly, from February 2001 to February 2002 and from February 2004 to February 2005, in the lower Han River (LHR), South Korea. The phytoplankton abundance during the dry season was approximately two times higher than that during the rainy season. In particular, fluctuations in diatom assemblages, which constituted over 70% of the total phytoplankton abundance, were affected severely by the changes in the discharge. When a large quantity of water in a dam was discharged into the LHR, the conductivity and the concentrations of total nitrogen (TN), total phosphorus (TP), and dissolved inorganic phosphorus (DIP) decreased rapidly, whereas the concentrations of suspended solids (SS), dissolved inorganic nitrogen (DIN), and dissolved silica (DSi) increased immediately. Time-delayed relationship also revealed that the dam discharge had an immediately significant negative relationship with phytoplankton abundance. On the whole, fluctuations in phytoplankton communities in the LHR were influenced much more by hydrodynamics such as dam discharge than by the availability of nutrients. Thus, the variability in these concentrations usually parallels the strength of river flow that is associated with summer rainfall, with higher values during periods of high river discharge.

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica (구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.459-464
    • /
    • 2016
  • In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

Silica and Iron Oxide Recovery and Mineral Carbonation from Serpentine Minerals Using Acid Dissolution and pH Swing Processes (산 처리와 pH 조절을 이용한 사문석군 광물로부터 규소와 철산화물 회수 및 광물 탄산화 연구)

  • Baek, Jiyeon;Jo, Yeonu;Lee, Jeongheon;Kwon, Nayoon;Kim, Yeram;Choi, Suk;Kim, Sunghee;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • The objectives of this study were to recover silica and iron oxides and $CO_2$ sequestration using serpentine via various acid dissolution and pH swing processes. Serpentine collected from Guhang-myeon in S. Korea were mainly composed of antigorite and magnetite consisting of $SiO_2$ (45.3 wt.%), MgO (41.3 wt.%), $Fe_2O_3$ (12.2 wt.%). Serpentine pulverized ($${\leq_-}75{\mu}m$$) and then dissolved in 3 different acids, HCl, $H_2SO_4$, $HNO_3$. Residues treated with acidic solution were recovered from the solution (step 1). And then the residual solution containing dissolved serpentine was titrated using $NH_4OH$. And pH of the solution increased up to pH=8.6 to obtain reddish precipitates (step 2). After recovery of the precipitates, the residual solution reacted with $CO_2$ and then pH increased up to pH=9.5 to precipitate white materials (step 3). The mineralogical characteristics of the original sample and harvested precipitates were examined by XRD, and TEM-EDS analyses. ICP-AES analysis was also used to investigate solution chemistry. The dissolved ions were Mg, Si, and Fe. The antigorite became noncrystralline silica after acid treatment (step 1). The precipitate at pH=8.6 was mainly amorphous iron oxide, of which size ranged from 2 to 10 nm and mainly consisting of Fe, O, and Si (step 2). At pH=9.5, nesquehonite [$Mg(HCO_3)(OH){\cdot}2(H_2O)$] and lasfordite [$MgCO_3{\cdot}H_2O$] were formed after reaction with $CO_2$ (step 3). The size of carbonated minerals was ranged from 1 to $6{\mu}m$. These results indicated that the acid treatment of serpentine and pH swing processes for the serpentine can be used for synthesis of other materials such as silica, iron oxides and magnesium carbonate. Also, This process may be useful for the precursor synthesis and $CO_2$ sequestration via mineral carbonation.

A Study on the Treatment of Petroleum-Contaminated Soils Using Hydrogen Peroxide (석유로 오염된 토양의 과수를 이용한 처리에 관한 연구)

  • 최진호;김재호;공성호
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.49-57
    • /
    • 1997
  • Naturally-occurring iron minerals, goethite and magnetite, were used to catalyze hydrogen peroxide and initiate Fenton-like oxidation of silica sand contaminated with diesel, kerosene in batch systems. Reaction conditions were investigated by varying H$_2$0$_2$concentration(0%, 1%, 15%), initial contaminant concentration(0.2, 0.5, 1.0g diesel and kerosene/kg soil), and iron minerals(1, 5wt% magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O$$_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. In case of silica sand contaminated with diesel(1g contaminan/kg soil with 5wt% magnetite) addition of 0%, 1%, 15% of $H_2O$$_2$showed 0%, 25%, and 60% of TPH reduction in 8 days, respectively When the mineral contents were varied from 1 to 5wt%, removal of contaminants increased by 16% for magnetite and 13.1% for goethite. The results from system contaminated by kerosene were similar to those of the diesel. Reaction of magnetite system was more aggressive than that of goethite system due to dissolution of iron and presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2$$O_2$. The system used goethite has better treatment efficiency due to less $H_2$$O_2$ consumption. Results of this study showed possible application of catalyzed $H_2$$O_2$ system to petroleum contaminated site without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF