• Title/Summary/Keyword: dissolved organics

Search Result 68, Processing Time 0.034 seconds

Performance Evaluation of Powdered Activated Carbon (PAC) Contactor for the Removal of Organics and Taste and Odor (분말활성탄 접촉조의 맛·냄새 및 유기물 제거 효율 평가)

  • Bae, Byung-Uk;Lim, Mun-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.585-589
    • /
    • 2010
  • In order to evaluate the performance of a powdered activated carbon (PAC) contactor, two water treatment plants (WTP) were selected as target sites. The result of tracer tests showed that the plug flow portion of a bisymmetry-type contactor (H WTP) was more than 70%. A maze-type contactor (C WTP) also had more than 70% of plug flow portion after intra-basin baffles were installed. According to the operating data of the target WTPs, there was no clear evidence that the addition of PAC contributed to the removal of organics. However, the results of jar tests, conducted with the raw water taken from the H WTP, proved that PAC could remove dissolved organic carbon (DOC) to some extent when the proper velocity gradient was maintained. It was estimated that the production rate, defined as the ratio of the operating flowrate to the design flowrate, of the C and H WTPs was only 27 and 50%, respectively. Because of these lower production rates, the mixing intensity in the contactor was much less than the designed value and, finally, the performance of the PAC contactor was much lower than what was expected.

Advanced Water Treatment by Ozonation in a Continuous Flow System (연속식 오존접촉조에서의 정수처리효과에 대한 연구)

  • Lee, Byung-Ho;Jung, Woo-Sung;Kim, Jae-Hoon;Lee, Jun-Hee;Kim, Tae-Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.94-104
    • /
    • 1997
  • Ozone Treatment is getting a common process in a water treatment plant all over the nation. Especially an advanced water treatment using ozone and biofiltration has been a typical method in the regions where using the Nak-Dong River as a drinking water source. The effectiveness of ozone treatment in a continuous flow contact system was investigated with sand filtered water of the Nak-dong River. Pilot tests of the experiments were performed three times of the year like June, August, and October 1995. Most degradable organics of sand filtered water were oxidized in the first and second contact chamber of the system. Ozone treatment was effective for the removal of UV254 absorbance. However, Noticeable removals of $KMnO_4$ demand and TOC(Total Organic Carbon) were occurred when their concentrations exceeded about 5mg/l. The organics causing $KMnO_4$ demand and TOC were degraded into lower molecular matter in an early stage of the ozone contact in the system. Dissolved oxygen concentration was increased after ozone treatment.

  • PDF

Effects of various foulants on flux changes in membrane distillation process (막증류 공정에서 오염 인자가 플럭스 변화에 미치는 영향)

  • Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • The effects of dissolved inorganic and organic matter in seawater and the characteristics of fouling on the membrane surface were investigated within membrane distillation (MD) process. The changes of the membrane flux of PE and PVDF hollow fiber membranes under natural and synthetic seawater were compared with given variances of temperature. The flux of both membranes under the synthetic seawater, without any organic matter, were higher than that of the natural seawater, indicating the organic fouling on the membrane surface. The surface of the membrane was analyzed using scanning electron microscope (SEM) to examine the fouling. The experiment with organics has shown the formation of thin film over the membrane surface, while the experiment with inorganics has shown only the formation of inorganic crystals. The results indicated the organic matter as the major foulants and that the organics affected the formation of the crystals. Permeate water conductivity of all conditions verified the quality of the water to be better if not similar to that of RO.

A Treatment Efficiency of Wastewater by using Sym-Bio Process and Dissolved Ozone flotation Process for Water Reuse (하수처리수 재이용을 위하여 Sym-bio공정과 용존 오존 부상공정을 이용한 하수처리의 효율 분석)

  • Park, Changyu;Park, Jaehan;Lee, Kyunghee;Ahn, Yoonhee;Ko, Kwangbaik;Jung, Hyuncheol
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.86-90
    • /
    • 2008
  • Water reuse of effluent is limited, due to bacteria and chromaticity or turbidity which may result in low perception of water quality. Consequently, this study showed a method in the reuse of treated wastewater by a diversified treatment method, with separation of centralized reformation of aeration tank into pre-treatment with minimum installation of facilities, and post-treatment, applying advanced oxidation treatment. A pilot plant experiment was performed using Sym-Bio process adopting an NADH Sensor without modification of the exiting aeration tank. The Dissolved Ozone Flotation process, which is an advanced oxidation process, to treat the remaining organics, nutrients, chromaticity, turbidity and bacteria. As a result in the Sym-Bio process, the biological treatment, even on the condition of single stage reaction tank, the treatment efficiencies of BOD, $COD_{Mn}$, $COD_{Cr}$, SS and T-N were 96.6%, 84.6%, 88.25%, 95.1% and 71.0%, respectively, while that for T-P was 25.0%, which required further treatment. In the Dissolved Ozone Flotation process, the advanced oxidation treatment, the treatment efficiencies of BOD, $COD_{Mn}$, $COD_{Cr}$, SS, T-N, T-P, chromaticity, turbidity, bacteria, coliforms were 78.9%, 34.6%, 28.7%, 48.0%, 70.4%, 82.4%, 84.0%, 74.5%, 99.8% and 99.4%, respectively.

A Study on the Biodegradability and Characteristics Based on Apparent Molecular Weight Distribution of Dissolved Organic Matter in Sewage (하수중 용존 유기물의 생분해도 및 분자량 분포에 따른 거동특성에 관한연구)

  • 최정헌;이윤진;명복태;우달식;이운기;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • This present study was aimed to investigate the characteristics of dissoloved organic matter (DOC) in sewage. The results are summarized as follows ; The plateaux reached in 3~4 days by the biodegradability test on sewage samples based on DOC. 쏭 rations of BDOC to DOC were 48, 21, 13 and 11% for raw sewage, primary treatment effluent, secondary treatment effluent and final treatment effluent, respectively. As the SUVA values ranged less 3L/m.mg for the effluent of sewage treatment plant, the DOC is composed largely of non-humic materials, hydrophilic, less aromatic as compared to waters with higher SUVA values. Through the biodegradability test, Dissolved organics showed that the quantity of LMW(Low Molecular Weight) less than 1,000 daltons was decreased, HMW(High Molecular Weight) more than 30,000 daltons had a tendency to increase. Large portion of UV$^{254}$ in final treatment effluent was increased of MMW(Medium Molecular Weight). Also, average removal efficiency of DOC was 32% during sewage treatment.

  • PDF

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

Application of Membranes for Organic Liquid or Vapor Separation and Design of Plasma-Graft Filling-Polymerized Membranes

  • Yamaguchi, Takeo;Nakao, Shin-ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.34-39
    • /
    • 1996
  • There is much recent interests in applying membrane separation technologies, especially for organic liquid and vapor separation or removing dissolved organics from water. Pervaporation separation can separate azeotropic mixtures and mixtures close to boiling point, and it has a potential for energy saving process instead of distillation. Removal of chlorinated oraganics from water is other measure application for pervaporation separation. Contaminated pollutant must be removed from water, and a pervaporation can effectively remove the pollutant. Air pollution by organic vapor recently became serious enviromncntal problem, and removing organic vapor from air is important application of the membrane technology.

  • PDF

Fundamental Studies on the Treatment of Particulate Organic Substances Contained in Wastewater by Flotation (부유선별법에 의한 폐수 함유 입자성 유기 물질 처리에 대한 기초 연구)

  • Yoo, Jung-Min;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.674-680
    • /
    • 2013
  • Basic studies for the treatment of particulate organic substances contained in wastewater by flotation have been conducted. Four kinds of plastics were chosen as the possibly existing organic particles in wastewater and the Zisman plots for these substances were constructed by measuring the contact angle of liquids on their surfaces. The critical surface tensions for these organic substances were estimated based on the constructed Zisman plot and the floatability of organic substances were regarded to be related with their molecular structure. The existence of dissolved organic substances such as a surfactant was observed to affect the extent of flotation of particulate organics. In addition, the consideration of work of adhesion was thought to be better than adopting the critical surface tension as the analytical basis in the operational design of flotation process of organic particles.

Sidestream Deammonification (반류수탈암모니아 공정)

  • Park, Younghyun;Kim, Jeongmi;Choi, Wonyoung;Yu, Jaecheul;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.